There are a few ways you can go about solving this question. One way is to use the given information to find how many tons of flour can be processed in one hour. If 27 tons can be processed in 3 hours, we can do 27 divided by 3 to find that 9 tons of flour can be processed per hour. Then, if we want to see how many tons of flour can be processed in 8 hours, we can multiply 9 tons by 8 hours to get a total of 72 tons of flour.
I hope this helps.
Answer: ∠Z ≅ ∠G and XZ ≅ FG or ∠Z ≅ ∠G and XY ≅ FE are the additional information could be used to prove that ΔXYZ ≅ ΔFEG using ASA or AAS.
Step-by-step explanation:
Given: ΔXYZ and ΔEFG such that ∠X=∠F
To prove they are congruent by using ASA or AAS conruency criteria
we need only one angle and side.
1. ∠Z ≅ ∠G(angle) and XZ ≅ FG(side)
so we can apply ASA such that ΔXYZ ≅ ΔFEG.
2. ∠Z ≅ ∠G (angle)and ∠Y ≅ ∠E (angle), we need one side which is not present here.∴we can not apply ASA such that ΔXYZ ≅ ΔFEG.
3. XZ ≅ FG (side) and ZY ≅ GE (side), we need one angle which is not present here.∴we can not apply ASA such that ΔXYZ ≅ ΔFEG.
4. XY ≅ EF(side) and ZY ≅ FG(side), not possible.
5. ∠Z ≅ ∠G(angle) and XY ≅ FE(side),so we can apply ASA such that
ΔXYZ ≅ ΔFEG.
Step-by-step explanation:
P(t) = 12,000 (2)^(-t/15)
9,000 = 12,000 (2)^(-t/15)
0.75 = 2^(-t/15)
ln(0.75) = ln(2^(-t/15))
ln(0.75) = (-t/15) ln(2)
-15 ln(0.75) / ln(2) = t
t = 6.23
The function given is a quadratic function, so the graph will be a parabola. It'll look similar to the photo attached. The minimum cost will be at the vertex of the parabola because that is its lowest point! To find the x-value of the vertex (which is what the question is looking for), use the vertex formula: x = -b/2a. The variable b is the coefficient of the x term in the function, and the variable a is the coefficient of the x² term. In this case, a = 0.125 and b = -5.
x = -(-5)/2(0.125)
x = 5/0.25
x = 20
So, 20 gas grills should be produced each day to maintain minimum costs. Hope that helps! :)