Answer:
- Andre subtracted 3x from both sides
- Diego subtracted 2x from both sides
Step-by-step explanation:
<u>Andre</u>
Comparing the result of Andre's work with the original, we see that the "3x" term on the right is missing, and the x-term on the left is 3x less than it was. It is clear that Andre subtracted 3x from both sides of the equation.
__
<u>Diego</u>
Comparing the result of Diego's work with the original, we see that the "2x" term on the left is missing, and the x-term on the right is 2x less than it was. It is clear that Diego subtracted 2x from both sides of the equation.
_____
<em>Comment on their work</em>
IMO, Diego has the right idea, as his result leaves the x-term with a positive coefficient. He can add 8 and he's finished, having found that x=14.
Andre can subtract 6 to isolate the variable term, and that will give him -x=-14. This requires another step to get to x=14. Sometimes minus signs get lost, so this would not be my preferred sequence of steps.
As a rule, I like to add the opposite of the variable term with the least (most negative) coefficient. This results in the variable having a positive coefficient, making errors easier to avoid.
Answer:
Null hypothesis: ∪ = $7,000
Step-by-step explanation:
The null hypothesis is a general statement that there is no relationship between two measured instances or no association among groups.
In this case, the sales of a grocery store had an average of $7,000 per day is the null hypothesis. Then the research was carried out to test for the effectiveness of the advertising campaigns in increasing sales.
Thus, this is the alternative hypothesis. The researchers wish to test against the null with regards to the involvement of the advertising campaigns.
Thus, the null hypothesis is just the average sales without the advertising campaigns which is
Null hypothesis: ∪ = $7,000
Alternative hypothesis: ∪ ≠ $7,000
Give the equation 9m = 10n
Dividing both sides by 9n, we have

Therefore, the <span>proportion that results in the equation 9m = 10n is

</span>
Answer:
A. Initially, there were 12 deer.
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. After 15 years, there will be 410 deer.
D. The deer population incresed by 30 specimens.
Step-by-step explanation:

The amount of deer that were initally in the reserve corresponds to the value of N when t=0


A. Initially, there were 12 deer.
B. 
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. 
C. After 15 years, there will be 410 deer.
D. The variation on the amount of deer from the 10th year to the 15th year is given by the next expression:
ΔN=N(15)-N(10)
ΔN=410 deer - 380 deer
ΔN= 30 deer.
D. The deer population incresed by 30 specimens.