Answer:
The absolute brightness of the Cepheid star after a period of 45 days is -5.95
Step-by-step explanation:
Since the absolute magnitude or brightness of a Cepheid star is related to its period or length of its pulse by
M = –2.78(log P) – 1.35 where M = absolute magnitude and P = period or length of pulse.
From our question, it is given that P = 45 days.
So, M = –2.78(log P) – 1.35
M = –2.78(log 45) – 1.35
M = –2.78(1.6532) – 1.35
M = -4.60 - 1.35
M = -5.95
So, the absolute magnitude or brightness M of a Cepheid star after a period P of 45 days is -5.95
5 19 6 -18
-3
-15 -12 18
5 4 -6 0
Therefore, the width is 5x^2 + 4x - 6
The probability is 10/12. If you need it as a decimal, it should be about 8.3%
Answer:
a) About 12%
Step-by-step explanation:
We need to find the interest rate required to achieve her goal, so we will need to use the interest-compound formula:

Where:
PV= Present Value
i= interest rate
FV= Future Value
n= number of periods
replacing the data provided:

solving for i:
first, divide both sides by 50.000 to simplify the equation:

Take
roots of both sides:
±![\sqrt[10]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B10%5D%7B3%7D)
solve for i:
±![\sqrt[10]{3} -1](https://tex.z-dn.net/?f=%5Csqrt%5B10%5D%7B3%7D%20-1)
We get two answers, but we look for a coherent value. So we take the positive one:
≈12
Answer:
2.97142857143 = 104/35
Step-by-step explanation:
On calculators, anytime we're doing a fraction problem and we use calculators, It doesn't give us the fractions all it gives us is decimals, but i finally got the fraction for you. hope this helped
Make sure nobody copied and pasted my answer because i would be WILLING TO report their answer for copying and pasting