As a general rule to solve the problem we are going to transform all values to the lower unit.
a. 3 km 9 hm 9 dam 19 m + 7 km 7 dam
3,000 m 900 m 90 m 19 m + 7,000 m 70 m = 4,009 + 7,070 = 11,079 m
b. 5 sq.km 95 ha 8,994 sq.m + 11 sq. km. 11 ha 9,010 sq. m.
5,000,000 sq m 95,0000 sq m 8,994 sq m + 11,000,000 sq m 110,000 sq
9,010 sq m
5,103,994 sq m + 11,119,010 sq m = 16,223,004 sq m
c. 44 m – 5 dm
44 m - 0.5 m = 43.5 m
d. 73 km 47 hm 2 dam - 11 km 55 hm
73,000 m 4,700 m 20 m - 11,000 m 5,500 m
77,720 m - 16,500 m = 61,220 m
If point is the interior of <AOC ,
then m<AOB + m<BOC = m< AOC ( angle addition postulate ) eq 1
(3m<BOC ) + m <BOC = m <AOC { m<AOB = 3m<BOC)
4m <BOC = 108
m<BOC = 27
m<AOB + m <BOC = m < AOC
m<AOB = 108 - 27
m <AOB = 81
30 flower pots times 10 seeds in each equals 300 seeds
Answer:
The <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.
Step-by-step explanation:
The data provided is as follows:
25 to 34 45 to 54
1329 2268
1906 1965
2426 1149
1826 1591
1239 1682
1514 1851
1937 1367
1454 2158
Compute the mean and standard deviation for the group "25 to 34" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [1329+1906+...+1454]=\frac{13631}{8}=1703.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1086710.875}=394.01](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B1329%2B1906%2B...%2B1454%5D%3D%5Cfrac%7B13631%7D%7B8%7D%3D1703.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201086710.875%7D%3D394.01)
Compute the <em>z</em>-score for the group "25 to 34" as follows:

Compute the mean and standard deviation for the group "45 to 54" as follows:
![\bar x=\frac{1}{n}\sum x=\frac{1}{8}\times [2268+1965+...+2158]=\frac{14031}{8}=1753.875\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{8-1}\times 1028888.875}=383.39](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20x%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20%5B2268%2B1965%2B...%2B2158%5D%3D%5Cfrac%7B14031%7D%7B8%7D%3D1753.875%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B8-1%7D%5Ctimes%201028888.875%7D%3D383.39)
Compute the <em>z</em>-score for the group "45 to 54" as follows:

Thus, the <em>z</em>-score for the group "25 to 34" is 0.37 and the <em>z</em>-score for the group "45 to 54" is 0.25.