Answer:
a) 42°F < x < 176°F
b) The inequality graph is attached.
c) No, This is because at 20° F benzene would not be in liquid form but in solid form.
Step-by-step explanation:
According to the Question,
a) For the benzene to remain in liquid form, the temperature of benzene must be less than the boiling point and greater than the boiling point. Let x be the temperature of benzene, For benzene to remain as liquid, its temperature must be between:
42°F < x < 176°F
b) The inequality graph is attached. The graph shows that the temperature of benzene must be between 42°F and 176°F so that it would be a liquid. The Closed circles represent that it is greater than 2.
c) No, This is because at 20° F benzene would not be in liquid form but in solid form. Because the temperature cannot go below 42 before it freezes, she would not have been able to conduct her research .
Answer:
a. H0:μ1≥μ2
Ha:μ1<μ2
b. t=-3.076
c. Rejection region=[tcalculated<−1.717]
Reject H0
Step-by-step explanation:
a)
As the score for group 1 is lower than group 2,
Null hypothesis: H0:μ1≥μ2
Alternative hypothesis: H1:μ1<μ2
b) t test statistic for equal variances
t=(xbar1-xbar2)-(μ1-μ2)/sqrt[{1/n1+1/n2}*{((n1-1)s1²+(n2-1)s2²)/n1+n2-2}
t=63.3-70.2/sqrt[{1/11+1/13}*{((11-1)3.7²+(13-1)6.6²)/11+13-2}
t=-6.9/sqrt[{0.091+0.077}{136.9+522.72/22}]
t=-3.076
c. α=0.05, df=22
t(0.05,22)=-1.717
The rejection region is t calculated<t critical value
t<-1.717
We can see that the calculated value of t-statistic falls in rejection region and so we reject the null hypothesis at 5% significance level.
Answer:
AB = 8.857 cm
Step-by-step explanation:
Here, we are given a <em>right angle</em>
in which we have the following things:

Side <em>BC </em>is the hypotenuse here.
We have to find the side <em>AB</em>.
Trigonometric functions can be helpful to find the value of Side AB here.
Calculating
:
Sum of all the angles in
is
.

We know that <em>cosine </em>of an angle is:

So, side AB = 8.857 cm
.
I agree only if you have even powers -- even negative ones.
1/i^2 = 1/-1 = - 1
i^0 also gives 1 So far no problem.
It is when you consider the odd numbers that you don't get 1 or -1
You get either -i or i
i^(4n + 1) = i
i^(4n - 1) = -i