Answer:
See the answer below
Explanation:
Since bacteria are prokaryotes, they have no nucleus and membrane-bound organelles. The outside of a bacterial cell is protected by a structure called a capsule. The cell wall provides a rigid structure that gives the cell its shape. The cell membrane helps to transport ions, nutrients, and waste. The plasmids allow DNA to be transferred from one bacterium to another.
<em>The bacteria are microscopic organisms that are generally classified as prokaryotes. The prokaryotes lack nucleus and other membrane-bound organelles, unlike the eukaryotes. The bacteria cells are enclosed in a protective structure known as the capsule. Immediately after the capsule is the cell wall whose components vary depending on whether the bacteria is Gram-positive or negative. </em>
<em>Towards the innermost part of the cell, after the cell wall is the cell membrane. It acts as a channel for the transport of materials in and out of the cell. Some bacteria cells have short, circular, extrachromosomal DNA known as plasmids which can be transferred from one cell to another.</em>
they’re a product of sexual reproduction that are usually located on the lower surface of fern leaves. they’re essential for reproduction , they’re clusters of sporangia which contain the spores in plants like ferns & moss
Hello. This question is incomplete. Also, you forgot to show the flowchart. The flowchart is attached below and the full question is:
The flowchart below shows the three generations of a cross between a pea plant that has yellow pods and a pea plant that has green pods. Green pods are the dominant trait. The flowchart is missing the labels that describe the traits.
In which squares should the phrase “Green pods” appear?
1.A and D 2.B and E 3.A,C and D 4.A,B,C,D and E
Answer:
3.A,C and D
Explanation:
As shown in the question above, the flowchart shows the crossing of a pea plant with dominant features (green pods - AA) and a pea plant with recessive features (yellow features - aa). The crossing between plants with AA and aa alleles generates a completely Aa population, which in this case, has the dominant characteristic, that is, it has green pods. This is because the "Aa" alleles are called heterozygous and develop the dominant characteristic.
As we can see in the flowchart, the crossing between the two pea plants generated an offspring that is identified by table C, as we know this offspring has green pods and in the flowchart it is represented by a grayish rectangle. Therefore, we can say that the other gray rectangles represent pea plants with green pods, which are rectangles A, C and D.
Answer:
<em><u>What does she need from the food she ate and the air she breathes so that she can go on her run? </u></em>
A. Rosa needs carbohydrates rich food (bread) to carry out her jogging activity. Protein-rich food before exercise is not recommended unless she is on a weight loss program (diet plan).
B. Rosa needs oxygen to perform aerobic respiration, which is required for maximum release of energy (36 molecules per reaction run). Anaerobic reactions yield less energy (2 molecules of ATP per reaction run) and are not recommended.
<em><u>How do Rosa's body systems work together to get the molecules she needs into her cells?</u></em>
Rosa's body cells need carbohydrates (glucose) and oxygen to perform aerobic respiration for the release of maximum energy. The glucose and oxygen molecules are provided to the cells via diffusion into the bloodstream. During exercise/jogging, complex molecules of carbohydrates such as starch (present in bread) are broken down into simple molecules (glucose) which are diffused into the blood. Likewise, a high amount of oxygen is provided to the body's cells via diffusion in blood, which is carried out by the faster movement of lungs and heart. The combined action results in the supply of both types of molecules to enter the cell where mitochondria use these substrates to produce energy molecules (ATPs).
<em><u>How do hair cells use these molecules to release energy for her body to run?</u></em>
The substrates (glucose and oxygen) enters the bloodstream and then taken up to the cell. Then they are provided to the mitochondria for the release of energy in the form of ATP. This is why mitochondria are known as the powerhouse of the cells. Within the cell, energy is released in a three-step process, i.e. glycolysis, the Krebs cycle, and oxidative phosphorylation. Here glucose reacts with oxygen. In the end, aerobic respiration per reaction run produces 36 molecules of ATP which are sufficient to meet intensive energy needs. During excrcise, the supply of oxygen and glucose is also faster due to faster lungs and heart actions.
PS: Anaerobic respiration cannot meet energy demands faster because the reaction produces only 2 ATP molecules per reaction run.