Answer:
The number of ways is equal to 
Step-by-step explanation:
The multiplication principle states that If a first experiment can happen in n1 ways, then a second experiment can happen in n2 ways ... and finally a i-experiment can happen in ni ways therefore the total ways in which the whole experiment can occur are
n1 x n2 x ... x ni
Also, given n-elements in which we want to put them in a row, the total ways to do this are n! that is n-factorial.
For example : We want to put 4 different objects in a row.
The total ways to do this are
ways.
Using the multiplication principle and the n-factorial number :
The number of ways to put all 40 in a row for a picture, with all 12 sophomores on the left,all 8 juniors in the middle, and all 20 seniors on the right are : The total ways to put all 12 sophomores in a row multiply by the ways to put the 8 juniors in a row and finally multiply by the total ways to put all 20 senior in a row ⇒ 
Answer:
answer is

Step-by-step explanation:
After working this way for 6 months he takes a simple random sample of 15 days. He records how long he walked that day (in hours) as recorded by his fitness watch as well as his billable hours for that day as recorded by a work app on his computer.
Slope is -0.245
Sample size n = 15
Standard error is 0.205
Confidence level 95
Sognificance level is (100 - 95)% = 0.05
Degree of freedom is n -2 = 15 -2 = 13
Critical Value =2.16 = [using excel = TINV (0.05, 13)]
Marginal Error = Critical Value * standard error
= 2.16 * 0.205
= 0.4428

Your question is store uses the expression –2p + 50 to model the number of backpacks it sells per day, where the price, p, can be anywhere from $9 to $15. Which price gives the store the maximum amount of revenue, and what is the maximum revenue?
The answer is C. $12.50 per backpack gives the maximum revenue; the maximum revenue is $312.50.
The answer for the completion exercise shown above is the second option (option b), which is:
b. critical value.
Therefore, you have that the text is: "<span>A critical value is a numerical quantity computed from the data of a sample..."
</span>
This numeral quantity is used in statitics. Then, if the absolute value is greater that the quantity defined before, the null hypothesis must be rejected.