answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kakasveta [241]
2 years ago
9

If a helicopter's mass is 4,500kg and the net force on it is 18,000 N upward, what is its acceleration?

Physics
2 answers:
melamori03 [73]2 years ago
5 0

Answer:

Acceleration, a=4\ m/s^2

Explanation:

It is given that,

Mass of the helicopter, m = 4500 kg

Net force acting on the helicopter, F = 18000 N

Let a is the acceleration of the helicopter. The force acting on an object is equal to the product of mass and acceleration. It is calculated as :

F=ma

a=\dfrac{F}{m}

a=\dfrac{18000\ N}{4500\ kg}

a=4\ m/s^2

So, the acceleration of the helicopter is 4\ m/s^2. Hence, this is the required solution.

Vinvika [58]2 years ago
4 0
The acceleration is0.25m/s^2
You might be interested in
A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
stepan [7]

Answer:

15.7 m/s

Explanation:

The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

v(t)=u + gt

where

u = 0 is the initial velocity

g = 9.8 m/s^2 is the acceleration

t is the time

If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

v(1.6 s)=0+(9.8 m/s^2)(1.6 s)=15.7 m/s

4 0
2 years ago
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
2 years ago
g 2. The _____ spans the distance from the _____ to the location of the applied force. moment arm; pivot point moment of inertia
Alik [6]

Answer:

The correct answer to the following question will be Option A (moment arm; pivot point).

Explanation:

  • The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
  • The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
  • The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.

The other three choices are not related to the given situation. So that option A is the appropriate choice.

7 0
2 years ago
The water level in a tank is 20 m above the ground. a hose is connected to the bottom of the tank, and the nozzle at the end of
Damm [24]

Answer:

P_(pump) = 98,000 Pa

Explanation:

We are given;

h2 = 30m

h1 = 20m

Density; ρ = 1000 kg/m³

First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,

Thus, it can be expressed as;

P_(tank)+ P_(pump) = P_(nozzle)

Now, the pressure would be given by;

P = ρgh

So,

ρgh_1 + P_(pump) = ρgh_2

Thus,

P_(pump) = ρg(h_2 - h_1)

Plugging in the relevant values to obtain;

P_(pump) = 1000•9.8(30 - 20)

P_(pump) = 98,000 Pa

5 0
2 years ago
the temperature of a 2.0-kg increases by 5*c when 2,000 J of thermal energy are added to the block. What is the specific heat of
nata0808 [166]
To calculate the specific heat capacity of an object or substance, we can use the formula

c = E / m△T

Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.

Now just substitute the numbers given into the equation.

c = 2000 / 2 x 5
c = 2000/ 10
c = 200

Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
3 0
2 years ago
Other questions:
  • A substance has a specific heat of 0.870 J/g°C. It requires 2,000.0 joules to increase the temperature of 10.0 grams of the subs
    7·2 answers
  • A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m, rotating at a rate of 9 revolutions/minu
    9·1 answer
  • A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t
    13·1 answer
  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius 5.3×10−11m with a speed of 2.2×106m/s.
    15·1 answer
  • You are driving on the highway, and you come to a steep downhill section. As you roll down the hill, you take your foot off the
    12·2 answers
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • A cleaver physics professor wants to create a situation where a block starts from rest at the top of a 31.0° inclined plane and
    13·1 answer
  • Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
    13·1 answer
  • Find the lowest two frequencies that produce a maximum sound intensity at the positions of Moe and Curly.
    5·1 answer
  • Where is there kinetic energy in this system?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!