Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
Answer:

Explanation:
Las condiciones del problema requieren el cálculo de la rapidez inicial de los guijarros. Se sabe que el componente vertical de la rapidez final es cero. Por tanto, el tiempo se determina a continuación: (The conditions of this problems require the calculation of the initial speed of the peebles. It is known that vertical component of the final speed is zero. Therefore, the time is determined herein:).




Además, se determina el componente horizontal de la rapidez inicial (Likewise, the horizontal component of the initial speed is determined):


El guijarro tiene una rapidez de
cuando golpea la ventana (The peeble has a speed of
when it hits the window).
Answer:
The terminal speed of this object is 12.6 m/s
Explanation:
It is given that,
Mass of the object, m = 80 kg
The magnitude of drag force is,

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.



On solving the above quadratic equation, we get two values of v as :
v = 12.58 m/s
v = -15.58 m/s (not possible)
So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.
R= (rou * L) / area
where R is the wire resistance
rou: resistivity of the wire material
L : wire length
A : cross section area of wire
by sub.
0.757= (rou*25)/ 3.5*10^-6
25*rou = 2.6495*10^-6
rou= 1.0598*10^-7 ohm.m
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N