answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
2 years ago
8

A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do

es not have zero net force acting on it?
-The force exerted on the ball is greater than that exerted on the racket.
-Each half of the force pair acts on a different object.
-The two forces act in the same direction.
-The forces act perpendicular to each other.
Physics
1 answer:
Serga [27]2 years ago
4 0

Answer:

Each half of the force pair acts on a different object.

Explanation:

When a tennis racket strikes a tennis ball a pair force is produced. when the racket strikes the ball the racket exerts an action force on the tennis ball, according to Newton's third law for every action there is an equal and opposite reaction force, as a reaction the ball exert an equal and opposite force on the racket. These forces are often called pair forces.

As the forces acts on different bodies (Action force act on ball and reaction force act on racket) so the net force tennis ball is never zero.

You might be interested in
he first excited state of the helium atom lies at an energy 19.82 eV above the ground state. If this excited state is three-fold
bekas [8.4K]

Answer:

Relative population is  2.94 x 10⁻¹⁰.

Explanation:

Let N₁ and N₂ be the number of atoms at ground and first excited state of helium respectively and E₁ and E₂ be the ground and first excited state energy of helium respectively.

The ratio of population of atoms as a function of energy and temperature is known as Boltzmann Equation. The equation is:

\frac{N_{1} }{N_{2} } =  \frac{g_{1}e^{\frac{-E_{1} }{KT} }  }{g_{2}e^{\frac{-E_{2} }{KT} }}

\frac{N_{1} }{N_{2} } = \frac{g_{1}e^{\frac{-(E_{1}-E_{2})  }{KT} }  }{g_{2}}

Here g₁ and g₂ be the degeneracy at two levels, K is Boltzmann constant and T is equilibrium temperature.

Put 1 for g₁, 3 for g₂, -19.82 ev for (E₁ - E₂) and 8.6x10⁵ ev/K for K and 10000 k for T in the above equation.

\frac{N_{1} }{N_{2} } = \frac{1\times e^{\frac{-(-19.82)}{8.6\times 10^{-5}\times 10000} }  }{3}

\frac{N_{1} }{N_{2} } = 3.4 x 10⁹

\frac{N_{2} }{N_{1} } =  2.94 x 10⁻¹⁰

5 0
2 years ago
The actions of an employee are not attributable to the employer if the employer has not directly or indirectly encouraged the em
zepelin [54]

Answer:    the answer is d

Explanation: there are not more than 10 violations  within a twelve month period hope this helps

4 0
2 years ago
Joanna has become good friends with Janna, whose name begins with the same letter as hers. They sit next to each other in three
solmaris [256]
Proximity -------------------- APEX
5 0
2 years ago
Read 2 more answers
A large solar panel on a spacecraft in Earth orbit produces 1.0 kW of power when the panel is turned toward the sun. What power
Mandarinka [93]

Answer:

e*P_s = 11 W

Explanation:

Given:

- e*P = 1.0 KW

- r_s = 9.5*r_e

- e is the efficiency of the panels

Find:

What power would the solar cell produce if the spacecraft were in orbit around Saturn

Solution:

- We use the relation between the intensity I and distance of light:

                                  I_1 / I_2 = ( r_2 / r_1 ) ^2

- The intensity of sun light at Saturn's orbit can be expressed as:

                                  I_s = I_e * ( r_e / r_s ) ^2

                                  I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2

                                  I_s = 11 W / e*a

- We know that P = I*a, hence we have:

                                  P_s = I_s*a

                                  P_s = 11 W / e

Hence,                       e*P_s = 11 W

3 0
1 year ago
8. Find the momentum of a photon in eV/c and in Kg. m/s if the wavelength is (a) 400nm ; (b) 1 Å = 0.1 nm, (c) 3 cm ; and (d) 2
nataly862011 [7]
We use the formula: p = E/c where E = hc / λ. hence, p = h/  λ. where h is the Planck's constant: 6.62607004 × 10-34 m2 kg / s and <span>λ is the wavelenght. 
</span>
a) p = <span>6.62607004 × 10-34 m2 kg / s / 0.1 x10^-9 m = 6.62607 x 10-24 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 3 x10^-2 m = 2.20869 <span>x 10-32 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 2 x10^-9 m = 3.3130 <span>x 10-25 m kg/s</span>
7 0
1 year ago
Other questions:
  • An electric buzzer is activated, then sealed inside a glass chamber. When all of the air is pumped out of the chamber, how is th
    12·1 answer
  • What is the period of a wave if the wavelength is 100 m and the speed is 200 m/s?
    9·2 answers
  • 568 muons were counted by a detector on the top of Mount Washington in a one hour period of time. Assuming moving muons keep tim
    8·2 answers
  • Mike recently purchased an optical telescope. Identify the part of the electromagnetic spectrum that is closest to the frequency
    7·2 answers
  • A satellite revolves around a planet at an altitude equal to the radius of the planet. the force of gravitational interaction be
    11·1 answer
  • There is a 120 V circuit in a house that is a dedicated line for the dishwasher, meaning the dishwasher is the only resistor on
    12·2 answers
  • A transverse wave is described by the function y(x,t)=2.3cos(4.7x+12t−π/2), where distance is measured in meters and time in sec
    14·2 answers
  • An object travels 50 m in 4 s. It had no initial velocity and experiences constant acceleration. What is the magnitude of the ac
    5·1 answer
  • 1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
    5·1 answer
  • A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of 3.30 m/s2. What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!