answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
raketka [301]
2 years ago
10

--->Two aircraft P and Q are flying at the same speed. 300 m/s, The direction along which P is flying is at right angles to t

he
direction along which Q is flying. Find the magnitude of the
velocity of the aircraft P relative to aircraft Q.

pls guys I need answer so answer to me if you know the answer pls pls pls​
Physics
1 answer:
REY [17]2 years ago
5 0

Answer:

The magnitude of the velocity of the aircraft P relative to aircraft Q is zero

Explanation:

The velocity of the two aircraft, P & Q, v = 300 m/s

The angle of the direction between them, Ф = 90°

The magnitude of the velocity of aircraft P relative to aircraft Q is given by the formula

                                  <em> V = v cos Ф </em>

Substituting the values in the above equation

                                   v = 300 x cos 90°

                                      = 300 x 0

                                      = 0

Since the aircraft are at right angles, the velocity of one aircraft relative to the other is zero.

You might be interested in
Your latest invention is a car alarm that produces sound at a particularly annoying frequency of 3600 Hz . To do this, the car a
Alex17521 [72]

Answer:

The capacitance and the inductance can choose for a car-alarm circuit are

C = 215.27 μF

L = 9.078 μH

Explanation:

V =12.0 V, E = 1.55*10^2 J, f = 3600 Hz

To determine the capacitance can use the equation

U_c= \frac{1}{2}*C*V^2

Solve to C'

C = \frac{U_c*2}{V^2}=\frac{1.55x10^2J*2}{12.0^2V}

C=215.27 uF

To find the inductance can use the frequency of the circuit

f = \frac{1}{2\pi* \sqrt{C*L} }

Solve to L'

L = \frac{1}{4\pi^2*f^2*C}=\frac{1}{4\pi^2*3600^2*215.27 uF}}

L = 9.078 uH

6 0
1 year ago
A windowpane is half a centimeter thick and has an area of 1.0 m2. The temperature difference between the inside and outside sur
polet [3.4K]

To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

Where

k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)

A = 1m^2 Area

L = 5*10^{-3}m Length

T_H= Temperature of the "hot"reservoir

T_C= Temperature of the "cold"reservoir

Replacing with our values we have that,

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

\frac{Q}{t} = \frac{(0.84)(1)}{0.005} (15)

\frac{Q}{t} = 2520J/s

Therefore the correct answer is B.

3 0
2 years ago
he drawing shows two perpendicular, long, straight wires, both of which lie in the plane of the paper. The current in each of th
AleksandrR [38]

Answer:

The magnitudes of the net magnetic fields at points A and B is 2.66 x 10^{-6} T

Explanation:

Given information :

The current of each wires, I = 4.7 A

dH = 0.19 m

dV = 0.41 m

The magnetic of straight-current wire :

B= μ_{0}I/2πr

where

B = magnetic field (T)

μ_{0} = 1.26 x 10^{-6} (N/A^{2})

I = Current (A)

r = radius (m)

the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,

BH = μ_{0}I/2πr

     = (1.26 x 10^{-6})(4.7)/(2π)(0.19)

     = 4.96 x 10^{-6} T

BV = μ_{0}I/2πr

     = (1.26 x  10^{-6})(4.7)/(2π)(0.41)

     = 2.3 x 10^{-6} T

hence,

the net magnetic field = BH - BV

                                     = 4.96 x 10^{-6} - 2.3 x 10^{-6}

                                     = 2.66 x 10^{-6} T

4 0
2 years ago
Points A, B, and C form the vertices of a triangle in a nonuniform electrostatic field. The electrostatic work done on a particl
Trava [24]

Answer:

Explanation:

Let electric potential at A ,B and C be Va , Vb and Vc respectively.

Work done = charge x potential difference

Wab = q ( Va - Vb )

Wac =  q (  Va -  Vc )

Given

Wac = - Wab / 3

3Wac = - Wab

Now

Wbc = q ( Vb - Vc )

= q [ ( Va-Vc ) - ( Va - Vb )]  

= Wac - Wab

= Wac + 3Wac

= 4Wac

4 0
1 year ago
The density of ice is 0.93 g/cm3. what is the volume, in cm3, of a block of ice whose mass is 5.00 kg? remember to select an ans
serious [3.7K]

The Volume of the ice block is 5376.344 cm^3.

The density of a material is define as the mass per unit volume.

Here, the density of ice given is 0.93 g/cm^3

Mass of the ice block  given is 5 kg or 5000 g

Now calculate the volume of the ice block

density=mass/volume

0.93=5000/Volume

Volume =5376.344 cm^3

Therefore the volume of  ice block is 5376.344 cm^3

7 0
2 years ago
Other questions:
  • Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
    11·2 answers
  • A highway patrolman traveling at the speed limit is passed by a car going 20 mph faster than the speed limit. After one minute,
    13·2 answers
  • Isabella drops a pen off her balcony by accident while celebrating the successful completion of a physics problem. assuming air
    6·1 answer
  • At what distance above earth would a satellite have a period of 125 min?
    15·2 answers
  • A cricket player catches the ball leaning towards to the ground,why?​
    8·1 answer
  • At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
    12·1 answer
  • The strength of the gravitational field of a source mass can be measured by the magnitude of the acceleration due to gravity at
    14·1 answer
  • Claudia throws a baseball to her dog. Which free-body diagram shows the
    15·1 answer
  • Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of th
    13·1 answer
  • I pull the throttle in my racing plane at a = 12.0 m/s2. I was originally flying at v = 100. m/s. Where am I when t = 2.0s, t =
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!