<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
The distance between knothole and the paint ball is 0.483 m.
Explanation:
Given that,
Height = 4.0 m
Distance = 15 m
Speed = 50 m/s
The angle at which the forester aims his gun are,




Using the equation of motion of the trajectory
The horizontal displacement of the paint ball is


Using the equation of motion of the trajectory
The vertical displacement of the paint ball is



Put the value into the formula


We need to calculate the distance between knothole and the paint ball



Hence, The distance between knothole and the paint ball is 0.483 m.
I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m