The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Answer:
Explanation:
Wave length of sound from each of the speakers = 340 / 1700 = .2 m = 20 cm
Distance between first speaker and the given point = 4 m.
Distance between second speaker and the given sound
= √ 4² + 2² = √16 +4 = √20 = 4.472 m
Path difference = 4.472 - 4 = .4722 m.
Path difference / wave length = 0.4772 / 0.2 = 2.386
This is a fractional integer which is neither an odd nor an even multiple of half wavelength. Hence this point of neither a perfect constructive nor a perfect destructive interference.
Answer:
the wavelength λ of the light when it is traveling in air = 560 nm
the smallest thickness t of the air film = 140 nm
Explanation:
From the question; the path difference is Δx = 2t (since the condition of the phase difference in the maxima and minima gets interchanged)
Now for constructive interference;
Δx= 
replacing ;
Δx = 2t ; we have:
2t = 
Given that thickness t = 700 nm
Then
2× 700 =
--- equation (1)
For thickness t = 980 nm that is next to constructive interference
2× 980 =
----- equation (2)
Equating the difference of equation (2) and equation (1); we have:'
λ = (2 × 980) - ( 2× 700 )
λ = 1960 - 1400
λ = 560 nm
Thus; the wavelength λ of the light when it is traveling in air = 560 nm
b)
For the smallest thickness 
∴ 



Thus, the smallest thickness t of the air film = 140 nm
Answer:
Explanation:
total weight acting downwards
= 3g + 10g
13 g
volume of lead = 10 / 11.3 = .885 cm³
Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber = v x 1 x g
Buoyant force on lead = .885 x 1 x g
total buoyant force = vg + .885 g
For floating
vg + .885 g = 13 g
v = 12.115 cm³
total volume of bobber
= 4/3 x 3.14 x 2³
= 33.5 cm³
fraction of volume submerged
= 12.115 / 33.5
= .36
= 36 %
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2