Answer:
E. The ocean gains more entropy than the iron loses.
Explanation:
When there is a spontaneous process , entropy of the system increases . Here hot iron is losing entropy and ocean is gaining entropy . Net effect will be gain of entropy . That means entropy gained by ocean is more than entropy lost by iron .
Hence option E is correct .
Answer:
Term 1 = (0.616 × 10⁻⁵)
Term 2 = (7.24 × 10⁻⁵)
Term 3 = (174 × 10⁻⁵)
Term 4 = (317 × 10⁻⁵)
(σ ₑ/ₘ) / (e/m) = (499 × 10⁻⁵) to the appropriate significant figures.
Explanation:
(σ ₑ/ₘ) / (e/m) = (σᵥ /V)² + (2 σᵢ/ɪ)² + (2 σʀ /R)² + (2 σᵣ /r)²
mean measurements
Voltage, V = (403 ± 1) V,
σᵥ = 1 V, V = 403 V
Current, I = (2.35 ± 0.01) A
σᵢ = 0.01 A, I = 2.35 A
Coils radius, R = (14.4 ± 0.3) cm
σʀ = 0.3 cm, R = 14.4 cm
Curvature of the electron trajectory, r = (7.1 ± 0.2) cm.
σᵣ = 0.2 cm, r = 7.1 cm
Term 1 = (σᵥ /V)² = (1/403)² = 0.0000061573 = (0.616 × 10⁻⁵)
Term 2 = (2 σᵢ/ɪ)² = (2×0.01/2.35)² = 0.000072431 = (7.24 × 10⁻⁵)
Term 3 = (2 σʀ /R)² = (2×0.3/14.4)² = 0.0017361111 = (174 × 10⁻⁵)
Term 4 = (2 σᵣ /r)² = (2×0.2/7.1)² = 0.0031739734 = (317 × 10⁻⁵)
The relative value of the e/m ratio is a sum of all the calculated terms.
(σ ₑ/ₘ) / (e/m)
= (0.616 + 7.24 + 174 + 317) × 10⁻⁵
= (498.856 × 10⁻⁵)
= (499 × 10⁻⁵) to the appropriate significant figures.
Hope this Helps!!!
Explanation:
Given that,
Angular velocity = 0.240 rev/s
Angular acceleration = 0.917 rev/s²
Diameter = 0.720 m
(a). We need to calculate the angular velocity after time 0.203 s
Using equation of angular motion

Put the value in the equation


The angular velocity is 0.426 rev/s.
(b). We need to calculate the tangential speed of the blade
Using formula of tangential speed

Put the value into the formula


The tangential speed of the blade is 0.963 m/s.
(c). We need to calculate the magnitude at of the tangential acceleration
Using formula of tangential acceleration

Put the value into the formula


The tangential acceleration is 2.074 m/s².
Hence, This is required solution.