Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
Answer:

(we need the mass of the astronaut A)
Explanation:
We can solve this by using the conservation law of the linear momentum P. First we need to represent every mass as a particle. Also we can simplify this system of particles by considering only the astronaut A with an initial speed
of 0 m/s and a mass
and the IMAX camera with an initial speed
of 7.5 m/s and a mass
of 15.0 kg.
The law of conservation says that the linear momentum P (the sum of the products between all masses and its speeds) is constant in time. The equation for this is:

By the law of conservation we know that
For
(final linear momentum) we need to treat the collision as a plastic one (the two particles stick together after the encounter).
So:


Answer:
a) 1.2*10^-7 m
b) 1.0*10^-7 m
c) 9.7*10^-8 m
d) ultraviolet region
Explanation:
To find the different wavelengths you use the following formula:

RH: Rydberg constant = 1.097 x 10^7 m^−1.
(a) n=2

(b)

(c)

(d) The three lines belong to the ultraviolet region.
Humans can see wavelengths in the visible part of the electromagnetic spectrum. That is the range of approximately 400 - 700 nm. Honeybees can see visible light and about 100 nm more in the ultraviolet part of the electromagnetic spectrum. That is approximately 300 - 700 nm.