Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
From the conservation of linear momentum of closed system,
Initial momentum = final momentum
Mass of the student, M = 59 kg
Mass of the laser boat, m = 42 kg
Initial speed of student + laser boat, u =0
Final speed of laser boat, v = 1.5 m/s
Final speed of the student = V
(M+m) u =M V +m v
0 = (59 kg) V + (42 kg) (1.5m/s)
V = - 1.06 m/s
Thus, the speed of the student is 1.06 m/s in the opposite direction of the motion of boat.
Explanation:
It is given that,
Diameter of the semicircle, d = 45 m
Radius of the semicircle, r = 22.5 m
Speed of greyhound, v = 15 m/s
The greyhound is moving under the action of centripetal acceleration. Its formula is given by :



We know that, 


Hence, this is the required solution.
Inertia IS always present. Inertia is NOT the force that causes objects to continue moving in circles, that is centripetal force. Centripetal force is NOT always present. Centripetal force DOES pull objects toward the center of a circle. <span> Inertia and centripetal force DOES cause circular motion. Thank you and eat sand fren ;)</span>