Answer:
Acceleration of the car will be 
Explanation:
We have given mass of the ball m = 1600 kg
Force in north direction F= 7560 N
Resistance force which opposes the movement of car 
So net force on the car 
According to second law of motion we know that F=ma
So 

Answer:
The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency is 15.7 m/s
Explanation:
The Doppler shift equation is given as follows;

Where:
f' = Required observed frequency = 20.0 kHz
f = Real frequency = 21.0 kHz
v = Sound wave velocity = 330 m/s
= Observer velocity = X m/s
= Source velocity = 0 m/s (Assuming the source is stationary)
Which gives;

330 -
= (20/21)*330
= 330 - (20/21)*330 = 15.7 m/s
The minimum riding speed relative to the whistle (stationary) to be able to hear the sound at 21.0 kHz frequency = 15.7 m/s.
Answer:
B. 1 m/s
Explanation:
Metric unit conversions:
0.3 km = 300m
5 minutes = 5*60 = 300 seconds
So if a seal can reach a depth of 300m in a time of 300 seconds, its diving speed is the distance divided by time duration
v = s/t = 300/300 = 1m/s
So B is the correct answer
Answer:
2805 °C
Explanation:
If the gas in the tank behaves as ideal gas at the start and end of the process. We can use the following equation:
The key issue is identify the quantities (P,T, V, n) in the initial and final state, particularly the quantities that change.
In the initial situation the gas have an initial volume
, temperature
, and pressure
,.
And in the final situation the gas have different volume
and temeperature
, the same pressure
,, and the same number of moles
,.
We can write the gas ideal equation for each state:
and
, as the pressure are equals in both states we can write
solving for
(*)
We know
= 935 °C, and that the
(the complete volume of the tank) is the initial volume
plus the part initially without gas which has a volume twice the size of the initial volume (read in the statement: the other side has a volume twice the size of the part containing the gas). So the final volume 
Replacing in (*)
Answer:
2.93 A
Explanation:
From Ohm's law V = IR where V = voltage = 12 V, I = current = ? and R = resistance = 4.1 Ω.
So, the current in each quadraphonic stereo circuit is I = V/R = 12 V/4.1 Ω = 2.93 A