answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natta225 [31]
2 years ago
14

In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric

al, in this problem we'll model it as a sphere with a mass of 1.0 × 1013 kg and a radius of 1.6 km. If a rock were dropped from a height of 1.0 m above the comet's surface, how long would it take to hit the surface?
Physics
1 answer:
Viktor [21]2 years ago
8 0

To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are

Comet mass M = 1.0*10^{13} kg

Radius r = 1.6km = 1600 m

Rock was dropped from a height 'h' from surface = 1m

The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

g = \frac{GM}{R^2}

Where G means gravitational universal constant and M the mass of the planet

g = \frac{(6.67408*10^{-11})(1*10^{13})}{1600^2}

g = 2.607*10^{-4} m/s^2

Now calculate the value of the time

h = \frac{1}{2} gt^2

t = \sqrt{\frac{2h}{g}}

t = \sqrt{\frac{2(1)}{2.607*10^{-4}}}

t = 87.58s

The time taken for the rock to reach the surface is t = 87.58s

You might be interested in
The second law of thermodynamics imposes what limit on the efficiency of a heat engine? The second law of thermodynamics imposes
Dahasolnce [82]

The Second Law of Thermodynamics states that the state of entropy of the entire universe, as an isolated system, will always increase over time.

Take that as you will

5 0
2 years ago
Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
SSSSS [86.1K]
It would be water because if you freeze it than you will still be able to see it and if you boil it than you will be able to see it disappear.
3 0
2 years ago
Read 2 more answers
A box sits on a table. A short arrow labeled F subscript N points up. A short arrow labeled F subscript g points down. A long ar
Aloiza [94]

Answer:

unbalanced and right

Explanation:

7 0
2 years ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
The headlights of a car emit light of wavelength 400 nm and are separated by 1.2 m. The headlights are viewed by an observer who
densk [106]

Answer:

The most correct option is;

B. 10 km

Explanation:

L = \frac{y \times d}{1.22 \times  \lambda} = \frac{1.2 \times 0.004}{1.22 \times  400 \times 10^{-9}} = 9836.066 \ km

Where:

y = Distance between the two headlights

d = Aperture of observers eye

λ = Wavelength of light

L = Distance between the observer and the headlight

Therefore, from the above solution, the distance between the observer and the headlights is 9386.066 km which is approximately 10 km.

Also we have

sinθ = y/L = 1.22 (λ/d)  

= 1.22 \times \frac{400 \times 10^{-9}}{0.004}

sinθ = 1.22×10⁻⁴ rad

6 0
2 years ago
Read 2 more answers
Other questions:
  • Which object has the greatest inertia?
    13·2 answers
  • A soccer player with a mass of 60 kg is traveling at 8 m/s when he completes a corner kick on a 0.45 kg soccer ball. The soccer
    13·2 answers
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • A truck of mass 1800kg is moving with a speed 54km/h. When brakes are applied, it
    12·1 answer
  • A very long wire carries a uniform linear charge density of 5 nC/m. What is the electric field strength 13 m from the center of
    15·1 answer
  • A puck of mass m moving at speed v on a horizontal, frictionless surface is stopped in a distance d because a hockey stick exert
    7·1 answer
  • ASAP PLEASE HELPPP
    8·1 answer
  • The average standard rectangular building brick has a mass of 3.10 kg and dimensions of 225 m x 112 m x 75 m. The gravitational
    8·1 answer
  • A 615 watt refrigerator runs 24 hours/day. How much energy is used per month (30 days)?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!