Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Transverse waves travel on a direction that is perpendicular to the motion of the particles (or whatever medium is waving) So the particles must be moving east to west, which is transverse to the north-south motion of the wave
Let loudness be L, distance be d, and k be the constant of variation such that the equation that would best represent the given above is,
L = k/(d^2)
For Case 1,
L1 = k/(d1^2)
For Case 2,
L2 = k/((d1/4)^2)
For k to be equal, L1 = 16L2.
Therefore, the loudness at your friend's position is 16 times that of yours.
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.