The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
Answer:
3494444444.44444 J
-87077491.39453 J
Explanation:
M = Mass of Earth = 
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
R = Radius of Earth = 
h = Altitude = 
m = Mass of satellite = 629 kg
v = Velocity of spacecraft = 
The kinetic energy is given by

The spacecraft's kinetic energy relative to the earth is 3494444444.44444 J
Potential energy is given by

The potential energy of the earth-spacecraft system is -87077491.39453 J
Answer:

Explanation:
As we know that water from the fountain will raise to maximum height

now by energy conservation we can say that initial speed of the water just after it moves out will be




Now we can use Bernuolli's theorem to find the initial pressure inside the pipe



Answer:
research topic and research question (hypothesis)
Explanation:
Answer:
3.1×10⁻¹¹ N
Explanation:
Use Coulomb's law:
F = k q₁ q₂ / r²
F = (9×10⁹) (6.0×10⁻¹⁰) (2.3×10⁻¹⁵) / (0.02 m)²
F = 3.1×10⁻¹¹