Answer:
The speed of ejection is 
Solution:
As per the question:
Magnetic field density, B = 0.4 T
Density of the material in the sunspot, 
Now,
To calculate the speed of ejection of the material, v:
The magnetic field energy density is given by:

This energy density equals the kinetic energy supplied by the field.
Thus


where
m = mass of the sunspot in
= 


3 kilometers, it is just 5/60 or 1/12 multiplied by 36.
Answer:
The work done is 360 J.
Explanation:
Given that,
Mass = 50 kg
Distance =3 m
We need to calculate the work done
The work done is equal to the product of force and displacement.
Using formula of work done


Where, F = force
D = distance
θ = Angle between force and displacement
Put the value into the formula


Hence, The work done is 360 J.
Answer:
From the initial height h
Explanation:
When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already
Molecules in a gas move faster than in a liquid.
hope it helps.