The crate only moves horizontally, so its net vertical force is 0. The only forces acting in the vertical direction are the crate's weight (pointing downward) and the normal force of the surface on the crate (pointing upward). By Newton's second law, we have
∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0 → <em>n</em> = <em>mg</em> = 1876 N
where <em>n</em> is the magnitude of the normal force.
In the horizontal direction, the crate is moving at a constant speed and thus with no acceleration, so it's completely in equilibrium and the net horizontal force is also 0. The only forces acting on it in this direction are the 747 N push (pointing in the direction of the crate's motion) and the kinetic friction opposing it (pointing in the opposite direction). By Newton's second law,
∑ <em>F</em> (horizontal) = 747 N - <em>f</em> = 0 → <em>f</em> = 747 N
The frictional force is proportional to the normal force by a factor of the coefficient of kinetic friction, <em>µ</em>, such that
<em>f</em> = <em>µn</em> → <em>µ</em> = <em>f</em> / <em>n</em> = (747 N) / (1876 N) ≈ 0.398188 ≈ 0.40
Complete Question
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).
Answer:
The pressure at the brain is 
Explanation:
Generally is mathematically denoted as

Substituting
for
(the density) ,
for g (acceleration due to gravity) , 0.4m for h (the height )
We have that the pressure difference between the heart and the brain is

But the pressure of blood at the heart is given as

Now the pressure at the brain is mathematically evaluated as



From tables,
SVP at 30°C = 4.24 kPa
From ideal gas expressions;
n = PV/RT = (4.24*1000*450)/(8.314*303) = 757.4 moles
Now, 75% of 757.4 moles will evaporate leaving 20%. Then, 25% of 757.5 moles...
25% of 757.4 moles = 25/100*757.4 = 189.35 moles
Mass of 189.35 moles = 189.35 moles*18 g/mol = 3408.3 g ≈ 3.4 kg
Answer:
C) the Fahrenheit thermometer is incorrect
Explanation:
Since
1) K = °C + 273
2) °F = 9/5 °C + 32
for 0 °C
1) K = 0°C + 273 = 273 K
2) °F = 9/5 * 0°C + 32 = 32 °F
Thus the Kelvin thermometer measurement coincides with the Celsius measurement but not with the °F . On the other hand, if the Fahrenheit measurement is right, the Celsius thermometer and the Kelvin one should be wrong.
Therefore is more reasonable to assume that one thermometer failed (the one of Fahrenheit and both Kelvin and Celsius are right ) that 2 thermometers ( Celsius and Kelvin thermometers fail and the one of Fahrenheit is right)