Answer:
Resistance = 3.35*
Ω
Explanation:
Since resistance R = ρ
whereas 
resistivity is given for two ends. At the left end resistivity is
whereas x at the left end will be 0 as distance is zero. Thus

At the right end x will be equal to the length of the rod, so 
Thus resistance will be R = ρ
where A = π 
so,

Let
be the direction the swimmer must swim relative to east. Then her velocity relative to the water is

The current has velocity vector (relative to the Earth)

The swimmer's resultant velocity (her velocity relative to the Earth) is then


We want the resultant vector to be pointing straight north, which means its horizontal component must be 0:

which is approximately 41º west of north.
Answer:
57.94°
Explanation:
we know that the expression of flux

where Ф= flux
E= electric field
S= surface area
θ = angle between the direction of electric field and normal to the surface.
we have Given Ф= 78 
E=
S=
= 
=0.5306
θ=57.94°
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz
Answer:
In hot gases , the atoms keeps colliding with each other and sometimes the energy liberated during collision takes the electron to a higher level,thus, .The object is a cloud of hot gas and finally the electron returns back emitting photon