Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
Car with a mass of 1210 kg moving at a velocity of 51 m/s.
2. What velocity must a 1340 kg car have in order to have the same momentum as a 2680 kg truck traveling at a velocity of 15 m/s to the west? 3.0 X 10^1 m/s to the west.
Hope i helped
Have a good day :)
Answer:
- asses disease progression and tissue function
- utilize a biologically active molecule
- utilize a radionuclide tracer
Explanation:
Answer:
a) battery-->electrical current-->copper wire rotor -->magnet--> mechanical energy
Explanation:
Answer:
Explanation:
Let the height of the tree is y and the distance of tree from point B is x.
According to the diagram

x = 0.55 y ..... (1)

(50 + 0.55y) 1.17 = y ..... from equation (1)
58.5 + 0.644 y = y
0.356 y = 58.5
y = 164.3 ft