The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
Answer:
a. 0.000002 m
b. 0.00000182 m
Explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:


b) If the temperatures changes, we can still reuse the ideal gas equation above:


Answer:
I know that T= kx where T is the tension which equaka the force og gravity = mg = 1.37 * 10 = 13.7 x is the elongation of the spring so the length after dangling the object minus the original length.
I hope it helps
plz let me know if it is wrong or right.
Answer:

Explanation:
Given that,
The radius of sphere, r = 0.3 m
Distance from the center of the sphere to the point P, x = 0.5 m
Electric field at point P,
(radially outward)
The maximum electric field is at the surface of the sphere. We know that the electric field is inversely proportional to the distance. So,




So, the magnitude of the electric field due to this sphere is 41666.66 N/C. Hence, this is the required solution.