Complete Question
The complete question is is shown on the first uploaded
Answer:
The elastic potential energy at point B is
The kinetic energy at point D is 
Explanation:
Looking at the given point we can observe that mechanically energy(i.e potential and kinetic energy ) is conserved and it value is 
So at point B


KE at point B is 50J
So 
Now at point D

at point D is 25J
So 
Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m
Complete Question
The compete question is shown on the first uploaded question
Answer:
The speed is
Explanation:
From the question we are told that
The distance of separation is d = 4.00 m
The distance of the listener to the center between the speakers is I = 5.00 m
The change in the distance of the speaker is by 
The frequency of both speakers is 
Generally the distance of the listener to the first speaker is mathematically represented as
![L_1 = \sqrt{l^2 + [\frac{d}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%7D)
![L_1 = \sqrt{5^2 + [\frac{4}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%7D)

Generally the distance of the listener to second speaker at its new position is
![L_2 = \sqrt{l^2 + [\frac{d}{2} ]^2 + k}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%20%2B%20k%7D)
![L_2 = \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%20%2B%200.6%7D)
Generally the path difference between the speakers is mathematically represented as

Here
is the wavelength which is mathematically represented as

=> 
=>
=>
Here n is the order of the maxima with value of n = 1 this because we are considering two adjacent waves
=>
=>
Answer:
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
Explanation:
We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.
Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn
They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole
-
L + W₂ L + W₁ L / 2 = 0
T_{y} = W₂ + W₁ / 2
T_{y} = 120 + 150/2
T_{y} = 195 lb
we use trigonometry to find the cable tension
sin 30 = T_{y} / T
T = T_{y} / sin 30
T = 195 / sin 30
T = 390 lb
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
T < 500 lb