answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
2 years ago
11

Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at

A and B. (a) What is the potential at point C? 8.990 kV * [2.5 points] 2 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] 8.990 OK (b) How much work is required to bring a positive charge of 5 mu or micro CC from infinity to point C if the other charges are held fixed? .04495 J * [2.5 points] 1 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] .04495 OK (c) Answer parts (a) and (b) if the charge at B is replaced by a charge of -4 mu or micro CC. Vc= kV [2.5 points] 0 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] W =
Physics
1 answer:
aliina [53]2 years ago
5 0

Answer:

a) 8.99*10³ V  b) 4.5*10⁻² J c) 0 d) 0

Explanation:

a)

  • The electrostatic potential V, is the work done per unit charge, by the electrostatic force, producing a displacement d from infinity (assumed to be the reference zero level).
  • For a point charge, it can be expressed as follows:

        V =\frac{k*q}{d}

  • As the electrostatic force is linear with the charge (it is raised to first power), we can apply superposition principle.
  • This means that the total potential at a given point, is just the sum of the individual potentials due to the different charges, as if the others were not there.
  • In our case, due to symmetry, the potential, at any corner of the triangle, is just the double of the potential due to the charge located at  any other corner, as follows:

        V = \frac{2*q*k}{d} = \frac{2*8.99e9N*m2/C2*4e-6C}{8m} =\\ \\ V= 8.99e3 V

  • The potential at point C is 8.99*10³ V

b)

  • The work required to bring a positive charge of 5μC from infinity to the point C, is just the product of the potential at this point times the charge, as follows:

        W = V * q = 8.99e3 V* 5e-6C = 4.5e-2 J

  • The work needed is 0.045 J.

c)

  • If we replace one of the charges creating the potential at the point  C, by one of the same magnitude, but opposite sign, we will have the following equation:

       V = \frac{8.99e9N*m2/C2*(4e-6C)}{8m}  + (\frac{8.99e9N*m2/C2*(-4e-6C)}{8m}) = 0

  • This means that the potential due to both charges is 0, at point C.

d)

  • If the potential at point C is 0, assuming that at infinity V=0 also, we conclude that there is no work required to bring the charge of 5μC from infinity to the point C, as no potential difference exists between both points.
You might be interested in
A 1.0 kg object moving at 4.5 m/s has a wavelength of:
Lisa [10]
By wave particle  duality.

Wavelength , λ = h / mv

where h = Planck's constant = 6.63 * 10⁻³⁴ Js,  m = mass in kg,  v = velocity in m/s.
m = 1kg,  v = 4.5 m/s

λ = h / mv

λ = (6.63 * 10⁻³⁴) /(1*4.5)

λ ≈  1.473 * 10⁻³⁴  m

Option D.
7 0
2 years ago
A Turtle and a Snail are 360 meters apart, and they start to move towards each other at 3 p.m. If the Turtle is 11 times as fast
Neko [114]

Answer:

Snail's speed = \frac{30m}{2400s} = 0.0125m/s

Turtle's speed =  \frac{330m}{2400s} = 0.1375m/s

Explanation:

Let the snail's speed be x m/s

The turtle's speed then is 11x m/s

Speed = Distance ÷ Time

Since speed and distance are directly proportional;

The ratio of the distances snail and turtle cover before they meet is x:11x respectively.

Simplified, the ratio of snail distance : turtle distance = 1:11

So snail covers a distance of \frac{1}{12} × 360 = 30m

And turtle covers a distance of \frac{11}{12} × 360 = 330m

The time each took before they met is 40 × 60 = 2400 seconds

Snail's speed = \frac{30m}{2400s} = 0.0125m/s

Turtle's speed =  \frac{330m}{2400s} = 0.1375m/s

8 0
2 years ago
Read 2 more answers
The constant pressure molar heat capacity, C_{p,m}C p,m ​ , of nitrogen gas, N_2N 2 ​ , is 29.125\text{ J K}^{-1}\text{ mol}^{-1
antoniya [11.8K]

Answer:

Explanation:

Constant pressure molar heat capacity Cp = 29.125 J /K.mol

If Cv be constant volume molar heat capacity

Cp - Cv = R

Cv = Cp - R

= 29.125 - 8.314 J

= 20.811 J

change in internal energy = n x Cv x Δ T

n is number of moles , Cv is molar heat capacity at constant volume ,  Δ T is change in temperature

Putting the values

= 20 x 20.811 x 15

= 6243.3 J.

3 0
2 years ago
The magnitude J(r) of the current density in a certain cylindrical wire is given as a function of radial distance from the cente
kipiarov [429]

Answer:

I=68.31\times 10^{-6}\ A

Explanation:

Given that

J(r) = Br

We know that area of small element

dA = 2 π dr

I = J A

dI = J dA

Now by putting the values

dI = B r . 2 π dr

dI= 2π Br² dr

Now by integrating above equation

\int_{0}^{I}dI= \int_{r_1}^{r_2}2\pi Br^2 dr

I={2\pi B}\times \dfrac{r_2^3-r_1^3}{3}

Given that

B= 2.35 x 10⁵ A/m³

r₁ = 2 mm

r₂ = 2+ 0.0115 mm

r₂ = 2.0115 mm

I={2\pi B}\times \dfrac{r_2^3-r_1^3}{3}

By putting the values

I={2\pi \times 2.35 \times 10^5 }\times \dfrac{(2.0115\times 10^{-3})^3-(2\times 10^{-3})^3}{3}\ A

I=68.31\times 10^{-6}\ A

7 0
2 years ago
Read 2 more answers
Trained dolphins are capable of a vertical leap of 7.0 m straight up from the surface of the water - an impressive feat. Suppose
dmitriy555 [2]

Answer:14 m

Explanation:

Given

Vertical jump make by the dolphin is given by h=7\ m

Suppose the dolphin jump with an initial velocity of u

so u is given by u^2=2\cdot g\cdot h

If dolphin launches at an angle \theta then maximum horizontal range is given by

assuming the of Dolphin to be Projectile so range is given by

R=\frac{u^2\sin 2\theta }{g}

substitute the value of u^2

R=\frac{2\times 9.8\times 7\sin 2\theta }{9.8}

R=2h\sin 2\theta

Range will be maximum for \theta =45^{\circ}

thus R_{max}=2\times 7\times 1=14\ m

                                     

3 0
2 years ago
Other questions:
  • Jack (mass 52.0 kg ) is sliding due east with speed 8.00 m/s on the surface of a frozen pond. he collides with jill (mass 49.0 k
    9·1 answer
  • Two blocks a and b ($m_a>m_b$) are pushed for a certain distance along a frictionless surface. how does the magnitude of the
    7·1 answer
  • Why is the entropy change negative for ring closures?
    14·1 answer
  • A short current element dl⃗ = (0.500 mm)j^ carries a current of 5.40 A in the same direction as dl⃗ . Point P is located at r⃗ =
    15·1 answer
  • Assume that you stay on the Earth's surface. What is the ratio of the sun's gravitational force on you to the earth's gravitatio
    9·1 answer
  • Mo is on a baseball team and hears that a ball thrown at a 45 degree angle from the ground will travel the furthest distance. Ho
    13·1 answer
  • The figure above represents a stick of uniform density that is attached to a pivot at the right end and has equally spaced marks
    13·1 answer
  • A one-dimensional particle-in-a-box may be used to illustrate the import kinetic energy quantization in covalent bond formation.
    6·1 answer
  • The diagram shows a stone suspended under the surface of a liquid from a string. The stone experiences a pressure caused by the
    7·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!