answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kipiarov [429]
2 years ago
11

Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at

A and B. (a) What is the potential at point C? 8.990 kV * [2.5 points] 2 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] 8.990 OK (b) How much work is required to bring a positive charge of 5 mu or micro CC from infinity to point C if the other charges are held fixed? .04495 J * [2.5 points] 1 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] .04495 OK (c) Answer parts (a) and (b) if the charge at B is replaced by a charge of -4 mu or micro CC. Vc= kV [2.5 points] 0 attempt(s) made (maximum allowed for credit = 5) [after that, multiply credit by 0.5 up to 10 attempts] W =
Physics
1 answer:
aliina [53]2 years ago
5 0

Answer:

a) 8.99*10³ V  b) 4.5*10⁻² J c) 0 d) 0

Explanation:

a)

  • The electrostatic potential V, is the work done per unit charge, by the electrostatic force, producing a displacement d from infinity (assumed to be the reference zero level).
  • For a point charge, it can be expressed as follows:

        V =\frac{k*q}{d}

  • As the electrostatic force is linear with the charge (it is raised to first power), we can apply superposition principle.
  • This means that the total potential at a given point, is just the sum of the individual potentials due to the different charges, as if the others were not there.
  • In our case, due to symmetry, the potential, at any corner of the triangle, is just the double of the potential due to the charge located at  any other corner, as follows:

        V = \frac{2*q*k}{d} = \frac{2*8.99e9N*m2/C2*4e-6C}{8m} =\\ \\ V= 8.99e3 V

  • The potential at point C is 8.99*10³ V

b)

  • The work required to bring a positive charge of 5μC from infinity to the point C, is just the product of the potential at this point times the charge, as follows:

        W = V * q = 8.99e3 V* 5e-6C = 4.5e-2 J

  • The work needed is 0.045 J.

c)

  • If we replace one of the charges creating the potential at the point  C, by one of the same magnitude, but opposite sign, we will have the following equation:

       V = \frac{8.99e9N*m2/C2*(4e-6C)}{8m}  + (\frac{8.99e9N*m2/C2*(-4e-6C)}{8m}) = 0

  • This means that the potential due to both charges is 0, at point C.

d)

  • If the potential at point C is 0, assuming that at infinity V=0 also, we conclude that there is no work required to bring the charge of 5μC from infinity to the point C, as no potential difference exists between both points.
You might be interested in
Suppose the circumference of a bicycle wheel is 2 meters. If it rotates at 1 revolution per second when you are riding the bicyc
Debora [2.8K]

Answer:

(c) speed will be 2 m/sec

Explanation:

We have given circumference C = 2 meters

Angular velocity = 1 rev/sec =1×2π rad/sec

We know that circumference C=2\pi r , where r is the radius of circumference

So 2=2\pi \times r

r = 0.318 meter

Linear velocity v=r\omega =0.318\times 2\times \pi =2m/sec

So option C will be the correct option

5 0
2 years ago
Compare these two collisions of a PE student with a wall.
Stolb23 [73]

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

3 0
2 years ago
What is the value of the composite constant (gmer2e), to be multiplied by the mass of the object mo in the equation above? expre
Bezzdna [24]

The solution would be like this for this specific problem:

 

 

F = (G Me Mo) / Re^2 

F / Mo = (G Me) / Re^2 

G = gravitational constant = 6.67384 * 10^-11 m3 kg-1 s-2 

Me = 5.972 * 10^24 kg 

Re^2 = (6.38 * 10^6)^2 m^2 = 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2 

G Me / Re^2 = (6.67384 * 10-11 * 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2 

9.7196 m/s^2 = acceleration due to Earth’s gravity 

Therefore, the value of the composite constant (Gme / r^2e) that is to be multiplied by the mass of the object mo in the equation above is 9.7196 m/s^2.

8 0
2 years ago
Read 2 more answers
Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
SSSSS [86.1K]
It would be water because if you freeze it than you will still be able to see it and if you boil it than you will be able to see it disappear.
3 0
2 years ago
Read 2 more answers
A particle has a velocity of v→(t)=5.0ti^+t2j^−2.0t3k^m/s.
Makovka662 [10]

Answer:

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

Explanation:

Given that

v(t) = 5 t i + t² j - 2 t³ k

We know that acceleration a is given as

a=\dfrac{dv}{dt}

\dfrac{dv}{dt}=5 i+2t j - 6\ t^2k

a=5 i+2t j - 6\ t^2k

Therefore the acceleration function a will be

a=5 i+2t j - 6\ t^2k

The acceleration at t = 2 s

a= 5 i + 2 x 2 j - 6 x 2² k  m/s²

a=5 i + 4 j -24 k m/s²

The magnitude of the acceleration will be

a=\sqrt{5^2+4^2+24^2}\ m/s^2

a= 24.83 m/s²

The direction of the acceleration a is given as

a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

a)a=5 i+2t j - 6\ t^2k

b)a=\dfrac{1}{24.83}(5i+4j-24k)\ m/s^2

5 0
2 years ago
Other questions:
  • 1. A U.S. manufacturer wants to sell computer equipment to companies in Honduras. Because the U.S. government limits trade with
    11·1 answer
  • What would be the kinetic energy k2q of charge 2q at a very large distance from the other charges? express your answer in terms
    5·1 answer
  • A semi-trailer is coasting downhill along a mountain highway when its brakes fail. The driver pulls onto a runaway truck ramp th
    13·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • Air at 27 ºC and 5 atm is throttled by a valve to 1 atm. If the valve is adiabatic and the change in kinetic energy is negligibl
    15·1 answer
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
    10·1 answer
  • Monochromatic light is incident on a grating that is 75 mm wide and ruled with 50,000 lines. the second-order maximum is seen at
    9·1 answer
  • A radioactive isotope has a half-life of 2 hours. If a sample of the element contains 600,000 radioactive nuclei at 12 noon, how
    11·1 answer
  • Although human beings have been able to fly hundreds of thousands of miles into outer space, getting inside the earth has proven
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!