Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N
"If one increases the force on an object, its acceleration increases too because the push it feels is greater"
We have the 2nd law of Newton that relates the 3 concepts; F=m*a. We have that if the mass of an object increases (put weight in luggage), the accelearation decreases; in fact it is inversely proportional to the mass. Hence if the mass is doubled, acceleration is halved. Accelerations is proportional to force; if one doubles the force, the acceleration doubles too.
Answer:
a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2 = 239.6 N,
b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm
Explanation:
Given that:
γ= 9.5 kN/m³ = 9500N/m3
b = 6 inches = 0.1524 m
t = 0.0013 mm
d = 2 inches = 0.0508 m
n = 1750 rpm

L = 9 ft = 2.7432 m
Ks = 1.25
g = 9.81 m/s²
a)







b)


dip = 
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m