I think its Oxygen.
ancient cyanobacteria produced Earth's first oxygen-rich atmosphere, which allowed the eventual rise of eukaryotes. T<span>he chloroplasts of eukaryotic algae and plants are derived from cyanobacteria</span>
<span>Answers: (a) 2.0 m/s (b) 4 m/s
Method:
(a) By conservation of momentum, the velocity of the center of mass is unchanged, i.e., 2.0 m/s.
(b) The velocity of the center of mass = (m1v1+m2v2) / (m1+m2)
Since the second mass is initially at rest, vcom = m1v1 / (m1+m2)
Therefore, the initial v1 = vcom (m1+m2) / m1 = 2.0 m/s x 6 = 12 m/s
Since the second mass is initially at rest, v2f = v1i (2m1 /m1+m2 ) = 12 m/s (2/6) = 4 m/s </span>
From Alyssa's point of view, the water balloon is at first at rest and then gets thrown with a velocity of 23m/s. Therefore the balloon will have a speed of 23m/s for Alyssa.
At the same time, Naya is watching, and she sees the balloon at the beginning moving at a speed of 14m/s along with Alyssa, and then pushed forward of other 23m/s. Therefore, from her point of view, the balloon will have a speed of 14+23 = 37m/s.
Hence, the correct answer is <span>D) The speed of the balloon is 23 m/s for Alyssa and 37 m/s for Naya.
</span>
Answer:
Explanation:
Acceleration is the time rate of change of velocity.
Acceleration and velocity are vectors
If east and north are the positive directions, the east moving vector is reduced to zero and the north moving vector increases from zero to 4 m/s.
There are 3 hours or 10800 seconds between 10 AM and 1 PM
a1 = √((-4)² + 4²) / 10800 = (√32) / 10800 m/s² ≈ 4.2 x 10⁻⁴ m/s²
There are 14400 seconds between 10 AM and 2 PM
The velocity changes are still the same
a2 = √((-4)² + 4²) / 10800 = (√32) / 14400 m/s² ≈ 3.9 x 10⁻⁴ m/s²
Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.