You can't find the acceleration of the ball. The graph tells the force, but you'd also need to know the mass of the ball.
Answer:
(a) x=ASin(ωt+Ф₀)=±(√3)A/2
(b) x=±(√2)A/2
Explanation:
For part (a)
V=AωCos(ωt+Ф₀)⇒±0.5Aω=AωCos(ωt+Ф₀)
Cos(ωt+Ф₀)=±0.5⇒ωt+Ф₀=π/3,2π/3,4π/3,5π/3
x=ASin(ωt+Ф₀)=±(√3)A/2
For part(b)
U=0.5E and U+K=E→K=0.5E
E=K(Max)
(1/2)mv²=(0.5)(1/2)m(Vmax)²
V=±(√2)Vmax/2→ωt+Ф₀=π/4,3π/4,7π/4
x=±(√2)A/2
Answer:
amount of energy = 4730.4 kWh/yr
amount of money = 520.34 per year
payback period = 0.188 year
Explanation:
given data
light fixtures = 6
lamp = 4
power = 60 W
average use = 3 h a day
price of electricity = $0.11/kWh
to find out
the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66
solution
we find energy saving by difference in time the light were
ΔE = no of fixture × number of lamp × power of each lamp × Δt
ΔE is amount of energy save and Δt is time difference
so
ΔE = 6 × 4 × 365 ( 12 - 9 )
ΔE = 4730.4 kWh/yr
and
money saving find out by energy saving and unit cost that i s
ΔM = ΔE × Munit
ΔM = 4730.4 × 0.11
ΔM = 520.34 per year
and
payback period is calculate as
payback period = 
payback period = 
payback period = 0.188 year
Answer:
35°C
Explanation:
q = mCΔT
2130 J = (0.200 kg) (710 J/kg/°C) (T − 20.0°C)
T = 35°C
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.