Any two-dimensional vector in cartesian (x,y) coordinates can be broken down into individual horizontal and vertical components using trigonometry. If a train goes up a hill with 15 degree incline at a speed of 22 m/s, the horizontal component is 22cos(15)=21.3 m/s and the vertical component is 22sin(15)=5.5 m/s.
A) f = 1.8 rev/s = 2 Hz
<span>T = 1 / f = 0.55s
B) not really sure..srry
C) </span><span>T = 2 pi √ ( L / g ) </span>
<span>0.57 = 2 x 3.14 x √ ( 0.2 / g )
</span><span>
g = 25.5 m/s²
</span>
Hope this helps a little at least.. :)
Answer:
a) v = 75 ft / s
, b) v = 55 ft / s
, c) Δx = 1000 ft
Explanation:
We can solve this exercise with the expressions of kinematics
a) average speed is defined as the distance traveled in a given time interval
v = (x₂-x₁) / (t₂-t₁)
v = (550 - 400) / (10 -8)
v = 75 ft / s
b) we repeat the calculations for this interval
v = (550 - 0) / (10 -0)
v = 55 ft / s
c) we clear the distance from the average velocity equation
Δx = v (t₂ -t₁)
Δx = 100 (20-10)
Δx = 1000 ft
Answer:
Explanation:
Calculate the volume of the lead

Now calculate the bouyant force acting on the lead


This force will act in upward direction
Gravitational force on the lead due to its mass will act in downward direction
Hence the difference of this two force

If V is the volume submerged in the water then bouyant force on the bobber is

Equate bouyant force with the tension and gravitational force

Now Total volume of bobble is

=
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils