answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
2 years ago
15

In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you

r rich uncle. The top of the fence is 5.00 m above the ground. You have taped an important message to a rock that you want to throw over the fence. The ground is level, and the width of the fence is small enough to be ignored. You throw the rock from a height of 1.60 m above the ground and at an angle of 54.0 degrees above the horizontal. Part A Part complete What minimum initial speed must the rock have as it leaves your hand to clear the top of the fence? Express your answer with the appropriate units. Part B For the initial velocity calculated in the previous part, what horizontal distance beyond the fence will the rock land on the ground?
Physics
1 answer:
olchik [2.2K]2 years ago
4 0

PART A)

horizontal distance that will be moved = 14 m

Height of the fence = 5.0 m

height from which it is thrown = 1.60 m

angle of projection = 54 degree

So here we can say that stone will travel vertically up by distance

\Delta y = 5 - 1.6 = 3.40 m

now we will have displacement in horizontal direction

\Delta x = 14 m

now we know that

v_x = vcos54

v_y = vsin54

now we will have

\Delta x = v_x t

14 = (vcos54)t

also for y direction

\Delta y = v_y t + \frac{1}{2}at^2

3.40 = (vsin54)t - \frac{1}{2}(9.8) t^2

now from the two equations we will have

3.40 = (vsin54)(\frac{14}{vcos54}) - 4.9 t^2

3.40 = 14 tan54 - 4.9 t^2

3.40 = 19.3 - 4.9 t^2

t = 1.8 s

now from above equations

14 = vcos54 (1.8)

v = 13.2 m/s

So the minimum speed will be 13.2 m/s

Part B)

Total time of the motion after which it will land on the ground will be "t"

so its vertical displacement will be

\Delta y = -1.60 m

now we will have

-1.60 = v_y t + \frac{1}{2}at^2

-1.60 = (13.2sin54)t - \frac{1}{2}(9.8)t^2

4.9 t^2 - 10.7t - 1.60 = 0

t = 2.3 s

Now the time after which it will reach the fence will be t1 = 1.8 s

so total time after which it will fall on other side of fence

t_2 = t - t_1

t_2 = 2.3 - 1.8 = 0.5 s

now the displacement on the other side is given as

\Delta x = (vcos54) t_2

\Delta x = (13.2 cos54)(0.5)

\Delta x = 3.88 m

You might be interested in
Compressional stress on rock can cause strong and deep earthquakes, usually at _____.
valentinak56 [21]
The answer is reverse faults. 
7 0
1 year ago
A 5-kg concrete block is lowered with a downward acceleration of 2.8 m/s2 by means of a rope. The force of the block on the Eart
maksim [4K]

When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:

F = mg

Where,

m = mass

g = Gravitational acceleration

F = 5*9.8

F = 49N

Therefore the correct answer is E.

5 0
1 year ago
Plastic foam is about 0.10 times as dense as water. What weight of bricks could you stack on a 1m x 1m x 0.10m slab of foam, so
goblinko [34]

Answer: Weight = 98.1N

Explanation:

Density of water = 1000 kg/m^3

Given that the Plastic foam is about 0.10 times as dense as water. That is,

Density of plastic foam = 0.1 × 1000 = 100kg/m^3

The volume V = 1 ×1×0.1 = 0.1 m^3

Density is the ratio of mass to volume

Density = mass/volume

Let us substitute for density and volume to get mass.

100 = M/0.1

Make M the subject of formula

M = 100 × 0.1 = 10 kg

Weight = mg

Where g = 9.81 m/s

Substitute the M and g into the formula

Weight = 10 × 9.81 = 98.1 N

Therefore, the weight of the brick is 98.1 N

4 0
2 years ago
Onur drops a basketball from a height of 10\,\text{m}10m10, start text, m, end text on Mars, where the acceleration due to gravi
Doss [256]

Answer:

Explanation:

Given that,

Basket ball is drop from height

H=10m

It is dropped on planet mass

And the acceleration due to gravity on Mars is given as

g= 3.7m/s²

Time taken for the ball to reach the ground

Initial velocity of the body is zero

u=0m/s

Using equation of motion: free fall

H = ut + ½gt²

10 = 0•t + ½ × 3.7 ×t²

10 = 0 + 1.85t²

10 = 1.85t²

Then, t² =10/1.85

t² = 5.405

t = √ 5.405

t = 2.325seconds

So the time the ball spend on the air before reaching the ground is 2.325 seconds

5 0
1 year ago
A 36,287 kg truck has a momentum of 907,175 kg • m/s. What is the trucks velocity.
Airida [17]

Momentum = Mass x Velocity

Put the values where they belong and solve for Velocity.

In this case, since Mass is being multiplied by Velocity, to solve for be Velocity you would divide both sides by Velocity.  The velocity will equal the momentum divided by the mass.

4 0
2 years ago
Other questions:
  • A tall cylinder contains 30 cm of water. oil is carefully poured into the cylinder, where it floats on top of the water, until t
    8·2 answers
  • Two point charges of values +3.4 and +6.6 μc are separated by 0.10 m. what is the electrical potential at the point midway betwe
    11·1 answer
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. where should one hang a mass of 0.50 kg to balance the stick?
    13·1 answer
  • Not too long ago houses were protected from excessive currents by fuses rather than circuit breakers. sometimes a fuse blew out
    9·1 answer
  • An adiabatic closed system is accelerated from 0 m/s to 30 m/s. Determine the specific energy change of this system, in kJ/kg.
    7·1 answer
  • Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a)
    11·1 answer
  • A steel cable 1.25 in. in diameter and 50 ft long is to lift a 20-ton load without permanently deforming. What is the length of
    13·1 answer
  • A 600 kg car is at rest, and then accelerates to 5 m/s.
    10·1 answer
  • A red cross helicopter takes off from headquarters and flies 120 km at 70 degrees south of west. There it drops off some relief
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!