Let loudness be L, distance be d, and k be the constant of variation such that the equation that would best represent the given above is,
L = k/(d^2)
For Case 1,
L1 = k/(d1^2)
For Case 2,
L2 = k/((d1/4)^2)
For k to be equal, L1 = 16L2.
Therefore, the loudness at your friend's position is 16 times that of yours.
Answer:
a) 0.0625 I_1
b) 3.16 m
Explanation:
<u>Concepts and Principles </u>
The intensity at a distance r from a point source that emits waves of power P is given as:
I=P/4π*r^2 (1)
<u>Given Data</u>
f (frequency of the tuning fork) = 250 Hz
I_1 is the intensity at the source a distance r_1 = I m from the source.
<u>Required Data</u>
- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.
- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.
<u>solution:</u>
(a)
According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:
I∝1/r^2
Set the proportionality:
I_1/I_2=(r_2/r_1)^2 (2)
Solve for I_2 :
I_2=I_1(r_2/r_1)^2
I_2=0.0625 I_1
(b)
Solve Equation (2) for r_2:
r_2=(√I_1/I_2)*r_1
where I_2 = (1/10)*I_1:
r_2=(√I_1/1/10*I_1)*r_1
=3.16 m
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Either theory or evidence