Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.
Answer:
a = the lowest critical speed of the shaft 882.81 rad/s
b = new diameter 0.05m or 50mm
c = critical speed 1765.62rad/s
Explanation:
see the attached file
<span>The minimum energy required for isomerization is 267 000 J/mol
</span>
The isomerization of cis-but-2-ene to trans-but-2-ene requires breaking of the π bond.
The bond energy of a C-C σ bond is 347 kJ/mol.
The bond energy of a C=C double bond (σ + π) is 614 kJ/mol.
So the bond energy of a π bond is (614 – 347) kJ/mol = 267 kJ/mol =
267 000 J/mol.