answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
1 year ago
12

A person is pushing a fully loaded 21.60 kg wheelbarrow at constant velocity along a plank that makes an angle ????=20.0∘ with t

he horizontal. The load is distributed such that the center of mass of the wheelbarrow is exactly halfway along its length L. What is the magnitude of the total force Fx the person must apply so that the wheelbarrow is parallel to that plank? You may neglect the radius of the wheel in your analysis. The gravitational acceleration is g=9.81 m/s2.
Physics
1 answer:
erica [24]1 year ago
4 0

Answer:

Explanation:

The weight of the wheelbarrow will act downwards . Its component parallel to the plank will act downwards along the plank .

The value of component = mgsinθ

21.6 x 9.8 x sin20

= 72.4 N

The person shall have to apply force equal to this component so that the barrow moves with uniform velocity.

Force required = 72.4 N .

You might be interested in
A pair of glasses is dropped from the top of a 32.0m stadium. A pen is dropped 2.Os later. How high above the ground is the pen
Svetllana [295]

Answer:

h_p = 30.46\ m

Explanation:

<u>Free Fall Motion</u>

A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.

The speed vf of the object when a time t has passed is given by:

v_f=g\cdot t

Where g = 9.8 m/s^2

Similarly, the distance y the object has traveled is calculated as follows:

\displaystyle y=\frac{g\cdot t^2}{2}

If we know the height h from which the object was dropped, we can solve the above equation for t:

\displaystyle t=\sqrt{\frac{2\cdot y}{g}}

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

\displaystyle t_1=\sqrt{\frac{2\cdot 32}{9.8}}=2.56\ sec

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

t_2=2.56 - 2 = 0.56\ sec

Therefore, it has traveled down a distance:

\displaystyle y=\frac{9.8\cdot 0.56^2}{2} = 1.54\ m

Thus, the height of the pen is:

h_p = 32 - 1.54\Rightarrow h_p=30.46\ m

8 0
2 years ago
A sample of nitrogen gas exerts a pressure of 9.80 atm at 32 C. What would its temperature be (in C) when its pressure is increa
Harlamova29_29 [7]

Answer:

T₂ = 111.57 °C

Explanation:

Given that

Initial pressure P₁ = 9.8 atm

T₁ = 32°C  = 273 + 32 =305  K

The final pressure   P₂ = 11.2 atm

Lets take the final temperature = T₂

We know that ,the ideal gas equation  

If the volume  of the gas is constant ,then we can say that

\dfrac{P_2}{P_1}=\dfrac{T_2}{T_1}

T_2=\dfrac{P_2}{P_1}\times T_1

Now by putting the values in the above equation ,we get

T_2=\dfrac{11.2}{9.8}\times 305\ K

T_2=348.57\ K

T₂ = 384.57 - 273 °C

T₂ = 111.57 °C

3 0
2 years ago
A small metallic bob is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizonta
shusha [124]

Answer:

19.99 kg m²/s

Explanation:

Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)

L = m r × v.

r and  v are perpendicular to each other,

where r = lsinθ.

l = 2.4 m

θ= 34°

g = 9.8 m/s²  and m = 5 kg

resolving using newtons second law in the vertical and horizontal components.

T cos θ − m g = 0

T sin θ − mw² lsin θ = 0

where T is the force with which the wire acts on the bob

w = √g / lcosθ

= √ 9.8 / 2.4 ×cos 34

= 2.2193 rad/s

the angular momentum  L = mr× v

= mw (lsin θ)²

= 5 × 2.2193 (2.4 ×sin 34°)²

=19.99 kg m²/s

8 0
2 years ago
A straight wire 20 cm long, carrying a current of 4 A, is in a uniform magnetic field of 0.6 T. What is the force on the wire wh
zheka24 [161]

Answer:

Magnetic force, F = 0.24 N

Explanation:

It is given that,

Current flowing in the wire, I = 4 A

Length of the wire, L = 20 cm = 0.2 m

Magnetic field, B = 0.6 T

Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :

F=ILB\ sin\theta

F=4\ A\times 0.2\ m\times 0.6\ T\ sin(30)

F = 0.24 N

So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.

7 0
2 years ago
Read 2 more answers
The solar energy strikes the deck at the rate of 1400 W on every square metre.
Elena-2011 [213]

br[ o o o o o o o o o o o o o o o o o o o o opppppo o o o. oo o o o

8 0
1 year ago
Other questions:
  • What factors might affect how the watermill works?
    14·2 answers
  • Which correctly identifies the parts of a transverse wave? A: crest B: amplitude C: wavelength D: trough A: trough B: amplitude
    10·2 answers
  • A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
    14·1 answer
  • A bucket of mass M (when empty) initially at rest and containing a mass of water is being pulled up a well by a rope exerting a
    5·1 answer
  • An agriculturalist working with Australian pine trees wanted to investigate the relationship between the age and the height of t
    9·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • Russell bradley carried 207 kg of bricks 3.65 m up a ladder. If the amount of work required to perform that task is used to comp
    14·2 answers
  • As an audio CD plays, the frequency at which the disk spins changes.
    13·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!