answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
1 year ago
6

Come si compongono due forze che agiscono in diversi punti di un corpo rigido? Oof

Physics
1 answer:
bagirrra123 [75]1 year ago
7 0

Answer:

Explanation:

I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.

You might be interested in
A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
Pie
Momentum before the collision
x-direction:
p = m₁v₁ = 1.5 * 4.5 = 6.75
x-direction:
p = 0

momentum after the collision is conserved:
x-direction:
p = 6.75 = m₁v₁ + m₂v₂ = 1.5 * 2. 1* cos -30° + 3.2 * v₂*cos θ
y-direction:
p = 0 = m₁v₁ + m₂v₂ = 1.5 * 2.1 * sin -30° + 3.2 * v₂ * sin θ

Solve the two equations for v₂ and θ.

5 0
2 years ago
A "biconvex" lens is one in which both surfaces of the lens bulge outwards. Suppose you had a biconvex lens with radii of curvat
Stolb23 [73]

Answer: f=150cm in water and f=60cm in air.

Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:

\frac{1}{f} = (nglass - ni)(\frac{1}{R1} - \frac{1}{R2}).

nglass is the index of refraction of the glass;

ni is the index of refraction of the medium you want, water in this case;

R1 is the curvature through which light enters the lens;

R2 is the curvature of the surface which it exits the lens;

Substituting and calculating for water (nwater = 1.3):

\frac{1}{f} = (1.5 - 1.3)(\frac{1}{10} - \frac{1}{15})

\frac{1}{f} = 0.2(\frac{1}{30})

f = \frac{30}{0.2} = 150

For air (nair = 1):

\frac{1}{f} = (1.5 - 1)(\frac{1}{10} - \frac{1}{15})

f = \frac{30}{0.5} = 60

In water, the focal length of the lens is f = 150cm.

In air, f = 60cm.

5 0
2 years ago
Read 2 more answers
Taylor places a nail on a bar magnet. The nail sticks to the magnet when lifted up off the table. She touches a paperclip to the
Ratling [72]
Prior to touching the bar magnet, the magnetic domains in the nail were pointing in random directions. When Taylor touched the nail to the bar magnet the magnetic fields of the magnetic domains aligned and it became a temporary magnet.
5 0
2 years ago
Read 2 more answers
A charge q = 3 × 10-6 C of mass m = 2 × 10-6 kg, and speed v = 5 × 106 m/s enters a uniform magnetic field. The mass experiences
NeX [460]

Answer:

Magnetic field, B = 0.004 mT

Explanation:

It is given that,

Charge, q=3\times 10^{-6}\ C

Mass of charge particle, m=2\times 10^{-6}\ C

Speed, v=5\times 10^{6}\ m/s

Acceleration, a=3\times 10^{4}\ m/s^2

We need to find the minimum magnetic field that would produce such an acceleration. So,

ma=qvB\ sin\theta

For minimum magnetic field,

ma=qvB

B=\dfrac{ma}{qv}

B=\dfrac{2\times 10^{-6}\ C\times 3\times 10^{4}\ m/s^2}{3\times 10^{-6}\ C\times 5\times 10^{6}\ m/s}

B = 0.004 T

or

B = 4 mT

So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.

4 0
2 years ago
Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
Semmy [17]

Answer:

{\rm K} = 2.4\times 10^{-19}~J

Explanation:

The electric field inside a parallel plate capacitor is

E = \frac{Q}{2\epsilon_0 A}

where A is the area of one of the plates, and Q is the charge on the capacitor.

The electric force on the electron is

F = qE = \frac{qQ}{2\epsilon_0 A}

where q is the charge of the electron.

By definition the capacitance of the capacitor is given by

C = \epsilon_0\frac{A}{d} = \frac{Q}{V}\\\frac{Q}{\epsilon_0 A} = \frac{V}{d} = \frac{12}{0.20} = 60

Plugging this identity into the force equation above gives

F = \frac{qQ}{2\epsilon_0 A} = \frac{q}{2}(\frac{Q}{\epsilon_0 A}) = \frac{q}{2}60 = 30q

The work done by this force is equal to change in kinetic energy.

W = Fx = (30q)(0.05) = 1.5q = K

The charge of the electron is 1.6 \times 10^{-19}

Therefore, the kinetic energy is 2.4\times 10^{-19}

8 0
2 years ago
Other questions:
  • Iron(II) carbonate (FeCO3) has a solubility product constant of 3.13 x 10-11 . Calculate the molar solubility of FeCO3 in water
    11·1 answer
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • Fiona and her twin sister April are enjoying the bumper cars at an amusement park. Fiona drives her car toward her sisters and t
    13·1 answer
  • As an audio CD plays, the frequency at which the disk spins changes.
    13·1 answer
  • A sinusoidally oscillating current I ( t ) with an amplitude of 9.55 A and a frequency of 359 cycles per second is carried by a
    12·1 answer
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • A cross country skier moves from location A to location B to location C to location D. Each leg of the back and forth motion tak
    7·1 answer
  • A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26
    5·1 answer
  • A 90 kg man stands in a very strong wind moving at 17 m/s at torso height. As you know, he will need to lean in to the wind, and
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!