The distance (ft) traveled by the particle at time t (s) is
s(t) = 0.01 t⁴ - 0.02 t³
Part (a)
The velocity at time t is
v(t) = 0.04t³ - 0.06t² ft/s
Part (b)
After 1 s, the velocity is
v(1) = 0.04 - 0.06 = - 0.02 ft/s
Part (c)
When the particle is at rest, the velocity is zero. The time when this happens is given by
0.04t³ - 0.06t² = 0
t²(0.04t - 0.06) = 0
The graph shown below presents a clear picture of the motion.
Answer:
t = 0 (smaller value) or t = 1.5 s (larger value)
Say the initial point is (0,0)
The final point is
x = 200 + 135*cos(30) = 200 + 135*sqrt(3)/2 = 316.91 ft
y = 135*sin(30) = 135/2 = 67.5 ft
Resultant vector = (316.91, 67.5) - (0,0) = 316.91, 67.5) ft
<span>A = area of styrofoam
M = mass of stryofoam = A*h*rho_s
m = mass of swimmer
Total mass = m + M = m + A*h*rho_s
Downward force = g*(total mass) = g*[m + A*h*rho_s]
The slab is completely submerged.
Buoyant force = g*(mass of water displaced) = g*[A*h*rho_w]
Equate these
g*[m + A*h*rho_s] = g*[A*h*rho_w]
m + A*h*rho_s = A*h*rho_w
A*h*[rho_w - rho_s] = m
A = m/[h*(rho_w - rho_s)]</span>
To finish one orbit it will take 98 x 60 seconds. So; <span>(2 x pi)/(98 x 60) = 1.07 x 10^-3 rad/sec. </span><span>
</span>