To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer:
the thickness required of a masonry wall L = 375mm
Explanation:
The detailed steps and appropriate use of fourier's law of heat conduction is as shown in the attached file.
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
Answer:
-209.42J
Explanation:
Here is the complete question.
A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with x-component Fx=−[20.0N+(3.0N/m)x]. How much work does the force you apply do on the cow during this displacement?
Solution
The work done by a force W = ∫Fdx since our force is variable.
Since the cow moves from x₁ = 0 m to x₂ = 6.9 m and F = Fx =−[20.0N+(3.0N/m)x] the force applied on the cow.
So, the workdone by the force on the cow is
W = ∫₀⁶°⁹Fx dx = ∫₀⁶°⁹−[20.0N+(3.0N/m)x] dx
= ∫₀⁶°⁹−[20.0Ndx - ∫₀⁶°⁹(3.0N/m)x] dx
= −[20.0x]₀⁶°⁹ - [3.0x²/2]₀⁶°⁹
= -[20 × 6.9 - 20 × 0] - [3.0 × 6.9²/2 - 3.0 × 0²/2]
= -[138 - 0] - [71.415 - 0] J = (-138 - 71.415) J
= -209.415 J ≅ -209.42J
Answer:
75 m
Explanation:
The horizontal motion of the projectile is a uniform motion with constant speed, since there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal acceleration is zero.
The horizontal component of the velocity of the projectile is

and it is constant during the motion;
the total time of flight is
t = 5 s
Therefore, we can apply the formula of the uniform motion to find the horizontal displacement of the projectile:
