Answer:
The acceleration of the cheetahs is 10.1 m/s²
Explanation:
Hi there!
The equation of velocity of an object moving along a straight line with constant acceleration is the following:
v = v0 + a · t
Where:
v = velocity of the object at time t.
v0 = initial velocity.
a = acceleration.
t = time
We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.
Let's convert mi/h into m/s:
50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s
Then, using the equation:
v = v0 + a · t
22.4 m/s = 0 m/s + a · 2.22 s
Solving for a:
22.4 m/s / 2.22 s = a
a = 10.1 m/s²
The acceleration of the cheetahs is 10.1 m/s²
Answer:
Total number of electrons

electrons removed from each sphere

Fraction of electrons transferred is given as

Explanation:
As we know that moles is defined as



so number of atoms of Al in each sphere is given as


Now number of electrons in each atom is given as
atomic number = number of electrons in each atom = 13
total number of electrons in each sphere is


Also we know that force of attraction between them is given as



now we have




Fraction of electrons transferred is given as


Answer:1. Roche limit
2.hydrogen
3.atmosphere
4.mercury
5.venus
6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet
7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets
Explanation:
It would be 17 m/s
If we use
V2 = V1 + a*t
Sub in 5 for v1
2m/s*2 for a
And
6 for t
That should give you the answer.
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.