We are given: Final velocity (
)=20 m/s .
Time t= 2.51 s and
distance s = 82.9 m.
We know, equation of motion

Let us plug values of final velocity, and time in above equation.


Subtracting 2.51a from both sides, we get
-----------equation(1)
Using another equation of motion

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.
We get,

Now, we need to solve it for a.
20-20+2.51a=165.8a.
-163.29a=0
a=0.
So, the acceleration would be 0 m/s^2.
Force, newtons 3rd law of motion stated for every action there is an equal and opposite reaction
Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc
Answer:
The magnitudes of the net magnetic fields at points A and B is 2.66 x
T
Explanation:
Given information :
The current of each wires, I = 4.7 A
dH = 0.19 m
dV = 0.41 m
The magnetic of straight-current wire :
B= μ
I/2πr
where
B = magnetic field (T)
μ
= 1.26 x
(N/
)
I = Current (A)
r = radius (m)
the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,
BH = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.19)
= 4.96 x
T
BV = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.41)
= 2.3 x
T
hence,
the net magnetic field = BH - BV
= 4.96 x
- 2.3 x 
= 2.66 x
T