answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
2 years ago
6

A boy is pulling a load of 150N with a string inclined at an angle 30 to the horizontal if the tension of string is 105N the for

ce tending to lift the load off the ground is
Physics
1 answer:
Lorico [155]2 years ago
8 0

The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>

Why?

Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.

We can calculate the vertical force using the following formula:

VerticalForce=Force*Sin(30\° )=(BoysForce-StringForce)*\frac{1}{2}\\\\VerticalForce=(150N-105N)*\frac{1}{2}=VerticalForce=45N*\frac{1}{2}=22.5N

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>

Have a nice day!

You might be interested in
Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
Setler [38]

Answer:

given,

mass of copper = 100 g

latent heat of liquid (He) = 2700 J/l

a) change in energy

Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (300 - 4)

Q = 11153.63 J

He required

Q = m L

11153.63 = m × 2700

m = 4.13 kg

b) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (78 - 4)

Q = 2788.41 J

He required

Q = m L

2788.41 = m × 2700

m = 1.033 kg

c) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (20 - 4)

Q = 602.90 J

He required

Q = m L

602.9 = m × 2700

m =0.23 kg

8 0
2 years ago
in which sealed container would the organisms be able to continuously cycle o2 and co2 gases? a. a jar with a lizard eating a sn
DerKrebs [107]

Correct answer choice is :


C) A jar with snails crawling on living plants


Explanation:


By using the power of sunlight, plants can change carbon dioxide and water into glucose and oxygen in a method described photosynthesis. As photosynthesis needs sunlight, this method only occurs during the day. We usually like to think of this as plants `exhaling in carbon dioxide and `breathing out oxygen. Gas transfer between Alveolar Spaces and Capillaries. The role of the respiratory system is to transfer two gases, oxygen and carbon dioxide. The transfer takes place in the millions of alveoli in the lungs and the capillaries that surround them.


4 0
2 years ago
Read 2 more answers
A cylindrical specimen of brass that has a diameter listed above, a tensile modulus of 110 GPa, and a Poisson's ratio of 0.35 is
Irina-Kira [14]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The strain experienced by the specimen is 0.00116 which is option A

Explanation:

The explanation is shown on the second uploaded image

8 0
2 years ago
The magnetic field around the head has been measured to be approximately 3.00×10−8 gauss . Although the currents that cause this
konstantin123 [22]

Answer:

3.81972\times 10^{-7}\ A

Explanation:

B = Magnetic field = 3\times 10^{-8}\ G

d = Diameter of loop = 16 cm

r = Radius = \frac{d}{2}=\frac{16}{2}=8\ cm

i = Current

\mu_0 = Vacuum permeability = 4\pi \times 10^{-7}\ H/m

The magnetic field of a loop is given by

B=\frac{\mu_0i}{2r}\\\Rightarrow i=\frac{B2r}{\mu_0}\\\Rightarrow i=\frac{3\times 10^{-8}\times 10^{-4}\times 2\times 0.08}{4\pi\times 10^{-7}}\\\Rightarrow i=3.81972\times 10^{-7}\ A

The current needed to produce such a field at the center of the loop is 3.81972\times 10^{-7}\ A

5 0
2 years ago
A 40-mH ideal inductor is connected in series with a 50 Ω resistor through an ideal 15-V DC power supply and an open switch. If
sergey [27]

Answer:i=300 mA

Explanation:

Given

inductance(L)=40 mH

Resistor(R)=50 \Omega

Voltage(V)=15 V

Time constant(\tau)=\frac{L}{R}

\tau =\frac{40\times 10^{-3}}{50}=8\times 10^{-4}

current i_0=\frac{V}{R}

i_0=\frac{15}{50}=0.3 A

Current as a function of time is given by

i=i_0\left ( 1-e^{-\frac{t}{\tau }}\right )

i=0.3\times 0.9998

i= 299.95 mA

6 0
2 years ago
Other questions:
  • a 1250 kg car accelerates from rest to 6.13m/s over a distance of 8.58m calculate the average force of traction
    6·1 answer
  • Which pair of sentences is describing the same velocity? A car is parked. A car is moving in circles. A bus drives 40 miles per
    9·2 answers
  • A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
    15·1 answer
  • A normal polarity magnet moves toward a stationary coil at 20 cm/s, and induces a maximum current of –8 mA. Which scenarios woul
    11·2 answers
  • You decide it is time to clean your pool since summer is quickly approaching. Your pool maintenance guide specifies that the chl
    6·1 answer
  • Charlie is playing with his daughter Torrey in the snow. She sits on a sled and asks him to slide her across a flat, horizontal
    10·2 answers
  • Consider the Bohr energy expression (Equation 30.13) as it applies to singly ionized helium He+ (Z = 2) and an ionized atom with
    14·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • An object on a number line moved from x = 15 cm to x = 165 cm and then
    6·2 answers
  • In a closed system that has 45 J of mechanical energy, the gravitational
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!