Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
Answer: A. Greater than 384 Hz
Explanation:
The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.
Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.
Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.
So option a is correct. i.e. now frequency will be greater than 384 Hz.
Answer:

Explanation:
As we know that the equation of SHM is given as

here we know that

here we have

now we have


now we have

now at t = 2.3 s we have


The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly