Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
Answer:
dont you have to times it
Explanation:
As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
Answer:
Part A. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull.
Part B. The magnitude of normal force acting on the suitcase is equal to the sum of the weight of the suitcase and the man.
Explanation:
Part A. This is because when the man pulls on the suit upwards, he exerts a force in the upward direction. This takes part of the force of weight of the suitcase and decreases the force the suitcase is exerting on the ground. Thus, the normal force (force exerted by suitcase on the ground) also decreases by the same force as the pull.
Part B. The statements for this part were not given in the question, but the answer reflects what is going to happen in that scenario. Since the man sits on the suitcase, the total weight acting on the ground through the suitcase is that of the suitcase plus the man. Since this force (acting on the ground) is normal force, the statement given in the answer is correct.