Answer:
H = 109.14 cm
Explanation:
given,
Assume ,
Total energy be equal to 1 unit
Balance of energy after first collision = 0.78 x 1 unit
= 0.78 unit
Balance after second collision = 0.78 ^2 unit
= 0.6084 unit
Balance after third collision = 0.78 ^3 unit
= 0.475 unit
height achieved by the third collision will be equal to energy remained
H be the height achieved after 3 collision
0.475 ( m g h) = m g H
H = 0.475 x h
H = 0.475 x 2.3 m
H = 1.0914 m
H = 109.14 cm
The gravitational force exerted on the satellite is called the centrifugal force, the force keeping it orbiting to the planet. Its formula is F= mass times the square of the velocity all over the radius.Thus,
F = 2400 * 6670^2 * (1/8.92x10^6)
F = 11,970 N
I hope I was able to help you. Have a good day.
Answer:
Energy absorbing lanyard as per OSHA
Explanation:
Energy absorbing lanyard if working over 6 feet in height so you don't break your back when you fall.
The mass of the puck is
m = 0.15 kg.
The diameter of the puck is 0.076 m, therefore its radius is
r = 0.076/2 = 0.038 m
The sliding speed is
v = 0.5 m/s
The angular velocity is
ω = 8.4 rad/s
The rotational moment of inertia of the puck is
I = (mr²)/2
= 0.5*(0.15 kg)*(0.038 m)²
= 1.083 x 10⁻⁴ kg-m²
The kinetic energy of the puck is the sum of the translational and rotational kinetic energy.
The translational KE is
KE₁ = (1/2)*m*v²
= 0.5*(0.15 kg)*(0.5 m/s)²
= 0.0187 j
The rotational KE is
KE₂ = (1/2)*I*ω²
= 0.5*(1.083 x 10⁻⁴ kg-m²)*(8.4 rad/s)²
= 0.0038 J
The total KE is
KE = 0.0187 + 0.0038 = 0.0226 J
Answer: 0.0226 J
4. Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement–time graph to show
this data, and use it to deduce the runner’s speed in the middle
of the race.
Table 2.4 Data for a sprinter during a race
Displacement
(m)
0 4 10 20 50 80 105
Time (s) 1 2 3 6 9 12