Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
Answer:
Explanation:
Given that,
Height of the bridge is 20m
Initial before he throws the rock
The height is hi = 20 m
Then, final height hitting the water
hf = 0 m
Initial speed the rock is throw
Vi = 15m/s
The final speed at which the rock hits the water
Vf = 24.8 m/s
Using conservation of energy given by the question hint
Ki + Ui = Kf + Uf
Where
Ki is initial kinetic energy
Ui is initial potential energy
Kf is final kinetic energy
Uf is final potential energy
Then,
Ki + Ui = Kf + Uf
Where
Ei = Ki + Ui
Where Ei is initial energy
Ei = ½mVi² + m•g•hi
Ei = ½m × 15² + m × 9.8 × 20
Ei = 112.5m + 196m
Ei = 308.5m J
Now,
Ef = Kf + Uf
Ef = ½mVf² + m•g•hf
Ef = ½m × 24.8² + m × 9.8 × 0
Ef = 307.52m + 0
Ef = 307.52m J
Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw
Answer:

Explanation:
The free body diagram of the block on the slide is shown in the below figure
Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces
N is the reaction force between the block and the slide
For equilibrium along x-axis we have

Using value of N from equation β in α we get value of force as

Applying values we get

km x h = km/h
First trial: 6 x 1 = 6km/h
Second trial: 9 x 2 = 18km/h
6 + 18 = <u>24km/h</u> (Total)
Or
6 + 9 = 15 km
2 + 1 = 3h
15 + 3 = 18
15 x 2 = 30
3 x 2 = 6
30 - 6 = <u>24km/h</u>
Answer:
Electric field, 
Explanation:
It is given that,
Magnitude of charge, 
Force experienced, 
We need to find the electric field at the origin. It is given by :




So, the electric field at the origin is
. Hence, this is the required solution.