answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
2 years ago
10

Which lanyard provides an impact force of less than 1,800 pounds, as recommended by good practices?

Physics
1 answer:
enyata [817]2 years ago
4 0

Answer:

Energy absorbing lanyard as per OSHA

Explanation:

Energy absorbing lanyard if working over 6 feet in height so you don't break your back when you fall.

You might be interested in
The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
Maurinko [17]
The formula for computing the orbital time period of a body is given as:

T² = 4π²r³ / GM

where T is the time period, r is the distance between the two bodies, G is the gravitational constant and M is the mass of the body that is being orbited. If we compute this time using SI units, the working is:

9.58 AU is 1.43 x 10¹² meters

T = √[(4*π²*(1.43 x 10¹²)³) / (6.67 × 10⁻¹¹ * 2 x 10³⁰)]
T = 9.30 x 10⁸ seconds which is approximately 29 years


Using the astronomical units, distance is in astronomical units and the mass is in solar masses. In these conditions, the ratio:
4π²/G = 1 so

T² = a³ (since the solar mass of the sun is 1)

T = √(9.58)³
T = 27 years
3 0
1 year ago
Read 2 more answers
A simple arrangement by means of which e.m.f,s. are compared is known
strojnjashka [21]

Answer:

A simple arrangement by means of which e.m.f,s. are compared is known as?

(a)Voltmeter

(b)Potentiometer

(c)Ammeter

(d)None of the above

Explanation:

5 0
2 years ago
A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
kondor19780726 [428]

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

8 0
2 years ago
A 6.0 kg box slides down an inclined plane that makes an angle of 39° with the horizontal. If the coefficient of kinetic frictio
dlinn [17]

Answer:

a = 4.72 m/s²  

Explanation:

given,

mass of the box (m)= 6 Kg

angle of inclination (θ) = 39°

coefficient of kinetic friction (μ) = 0.19

magnitude of acceleration = ?

box is sliding downward so,

F - f = m a                        

f is the friction force

m g sinθ - μ N = ma                        

m g sinθ - μ m g cos θ = ma            

a = g sinθ - μ g cos θ                    

a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°

a = 4.72 m/s²                                      

the magnitude of acceleration of the box down the slope is a = 4.72 m/s²  

3 0
2 years ago
Now assume that the boat is subject to a drag force fd due to water resistance. is the component of the total momentum of the sy
DochEvi [55]
Based on the given details with this question, I can say that the direction of motion is not conserved. This is because the boat is subjected to an external force because of water resistance. So, the answer for this question would be NO.
4 0
1 year ago
Read 2 more answers
Other questions:
  • To determin the density of an empty plastic jug what would you measure
    5·1 answer
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • A car drives off a cliff next to a river at a speed of 30 m/s and lands on the bank on theother side. The road above the cliff i
    11·1 answer
  • The work function for tungsten metal is 4.52eV a. What is the cutoff (threshold) wavelength for tungsten? b. What is the maximum
    12·1 answer
  • A typical meteor that hits the earth's upper atmosphere has a mass of only 2.5 g, about the same as a penny, but it is moving at
    15·1 answer
  • To store stacks of clean plates, a cafeteria uses a closed cart with a spring-loaded shelf inside. Customers can take plates off
    12·1 answer
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!