answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
2 years ago
10

Which lanyard provides an impact force of less than 1,800 pounds, as recommended by good practices?

Physics
1 answer:
enyata [817]2 years ago
4 0

Answer:

Energy absorbing lanyard as per OSHA

Explanation:

Energy absorbing lanyard if working over 6 feet in height so you don't break your back when you fall.

You might be interested in
Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
kobusy [5.1K]

Answer:

σ₁ = 3.167 * 10^{-6} C/m²

σ₂ = 7.6 * 10 ^{-6}  C/m²

Explanation:

The given data :-

i) The radius of smaller sphere ( r ) = 5 cm.

ii) The radius of larger sphere ( R ) = 12 cm.

iii) The electric field at of larger sphere  ( E₁ ) = 358 kV/m. = 358 * 1000 v/m

E_{1} = (\frac{1}{4\pi\epsilon  }) (\frac{Q_{1} }{R^{2} } )

358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }

Q₁ = 572.8 * 10^{-9} C

Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.

V = constant

∴\frac{Q_{1} }{R} = \frac{Q_{2} }{r}

Q_{2}  = \frac{r}{R} *Q_{1}

Q_{2} = \frac{5}{12} *572.8*10^{-9}   = 238.666 *10^{-9} C

Surface charge density ( σ₁ ) for large sphere.

Area ( A₁ )  = 4 * π * R²  = 4 * 3.14 * 0.12 = 0.180864 m².

σ₁  = \frac{Q_{1} }{A_{1} } = \frac{572.8 *10^{-9} }{0.180864} = 3.167 * 10^{-6}  C/m².

Surface charge density ( σ₂ ) for smaller sphere.

Area ( A₂ )  = 4 * π * r²  = 4 * 3.14 * 0.05²  =0.0314 m².

σ₂ =\frac{Q_{2} }{A_{2} } = \frac{238.66 *10^{-9} }{0.0314} = 7.6 * 10 ^{-6} C/m²

8 0
2 years ago
An object on a number line moved from x = 15 cm to x = 165 cm and then
olasank [31]

Answer:

v_avg = 2.9 cm/s

Explanation:

The average velocity of the object is the sum of the distance of all its trajectories divided the time:

v_{avg}=\frac{x_{all}}{t}

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm

Then, x_all = 150cm + 140cm = 290cm

The average velocity is, for t = 100s

v_{avg}=\frac{290cm}{100s}=2.9\frac{cm}{s}

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s

3 0
2 years ago
Read 2 more answers
A runner generates 1260 W of thermal energy. If this heat has to be removed only by evaporation, how much water does this runner
sergey [27]

Answer:0.502kg

Explanation:

F4om the relation

Power x time = mass x latent heat of vapourization

P.t=ML

1260 * 15 *60 = M * 22.6 * 10^5

M= 1134000/(22.6 *10^5)

M=0.502kg=502g

3 0
2 years ago
A sample of an unknown volatile liquid was injected into a Dumas flask (mflask = 27.0928 g, Vflask = 0.1040 L) and heated until
NNADVOKAT [17]

Answer:

The gas was Hexane

Explanation:

taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

m_{l}  = 27.4593g - 27.0928g = 0.3665g

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

d_{g}  = \frac{0.3665 g}{0.1040L} = 3.524 g/L

From the ideal gases law we have that the density can be calculated as:

d_{g}  = \frac{P*M}{R*T}

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:

M=\frac{d_{g}*R*T}{P}=\frac{3.524g/L*0,082atmL/molK*291K}{0.976atm}

M=86.16 g/mol

Note that the temperature is computed in Kelvin T= 18+273=291K

The gas with the closer molar mass is Hexane

4 0
2 years ago
Fill in the blanks to complete each statement about weathering. Weathering is the breakdown of rocks into smaller particles call
nevsk [136]

Answer:

sediments

Explanation:

Weathering is the breakdown of rocks into smaller particles called:

                 sediments

Weathering is the physical disintegration and chemical decay of rocks into smaller fragments to produce sediments. The product of rock weathering is basically sediments. Some of the sediments can be transformed to form soils when they combine with organic matter, water and air.

Physical weathering is when rocks are physically broken into smaller pieces, but the minerals in  the rock remain the same.

             Physical weathering

Physical weathering is the disintegration of rocks into smaller bits without altering the chemical make up of the minerals. The goal of physical weathering is to expose rock surface to action of chemical weathering.

When a rock is broken down in a way that changes the mineral composition, it is called  chemical weathering

          chemical weathering

Chemical weathering is the decay of rocks by altering the minerals in a rock.

Hope this Helps! c:

8 1
2 years ago
Read 3 more answers
Other questions:
  • Which statement correctly describes the electrons in a water molecule?. . A.Which statement correctly describes the electrons in
    7·2 answers
  • A cat falls from a table of height 1.3 m. What is the impact speed of the cat?
    15·1 answer
  • There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
    10·2 answers
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Describe why the smaller weigh
    14·2 answers
  • The curved section of a horizontal highway is a circular unbanked arc of radius 740m. If the coefficient of static friction betw
    15·2 answers
  • Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
    12·1 answer
  • A truck of mass mT = 2000 kg is going north on Guadalupe with a speed of 4 m/s. The truck is struck by an eastbound car (mass of
    14·1 answer
  • 13. An aircraft heads North at 320 km/h rel:
    5·1 answer
  • A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm li
    7·1 answer
  • If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!