Its 1,3, and 5. just took quiz and got it right.
Answer:
The speed of the air leaving the hairdryer is 10m/s.
Explanation:
The thrust that the dryer produces is what keeps it elevated at an angle of 5° from the vertical; therefore, from the force diagram we get

putting in
,
and solving for
we get:



Now, this thrust produced is related to to the air ejection speed
by the relation

where
is the rate of air ejection which we know is

and since
,


putting this into equation (2) and the value of
we get:

which gives


which is the speed of the air ejected.
Archimedes principle states
that
F1 / A1 = F2 / A2
F2 = (A2 / A1) * F1
Also, formula for the force is
F = mg. Formula for the area of the cylinder is A = πr^2, therefore we get
F2 = (πr2^2 / πr1^2) * mg
Since the diameter of the
cylinders are 2 cm and 24 cm, r1 = 12 and r2 = 1.
Substituting the values to the
derived equation, we get
F2 = (π 1^2 / π 12^2) * 2400 * 9.8
F2 = 163.3333 N
<span> </span>
Calculate the weight of the table through the equation,
W = mg
where W is the weight, m is the mass, and g is the acceleration due to gravity. Substituting the known values,
W = (0.44 kg)(9.8 m/s²)
<em>W = 4.312 N</em>
The components of this weight can be calculated through the equation,
Wx = W(sin θ)
and Wy = W(cos θ)
x - component:
Wx = W(sin θ)
Substituting,
Wx = (4.312 N)(sin 150°) = <em>2.156 N</em>
Wy = (4.312 N)(cos 150°) =<em> -3.734 N</em>