Answer:
The concentration of mole evil at oxygen on that day is 0.00858 mol/L
Explanation:
Here, we want to calculate the concentration of molecular oxygen
The pressure on that day is 1.0 atm
Since oxygen is at a concentration of 21%, the pressure of oxygen will be 21/100 * 1 = 0.21 atm
Now let’s calculate the concentration;
From Ideal gas law;
PV = nRT
This can be written as;
P/RT = n/V
The term n/V refers to concentration;
Let’s make substitutions now;
P = pressure = 0.21 atm
R = molar gas constant = 0.0821 L•atm/mol•k
T = temperature = 25 = 25 + 273.15 = 298.15 K
Substituting these values, we have;
n/V = C = 0.21/(0.0821 * 298.15) = 0.00858 mol/L
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
M1 descending
−m1g + T = m1a
m2 ascending
m2g − T = m2a
this gives :
(m2 − m1)g = (m1 + m2)a
a =
(m2 − m1)g/m1 + m2
= (5.60 − 2)/(2 + 5.60) x 9.81
= = 4.65m/s^2
Answer:

Explanation:
Mass of the cable car, m = 5800 kg
It goes 260 m up a hill, along a slope of 
Therefore vertical elevation of the car = 
Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. =
). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.
Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.
Hence, total change in energy = mgh = 
where, g = acceleration due to gravity
h = height/vertical elevation