answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
2 years ago
7

8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s

econds later its velocity has decreased by 15%. What is its angular velocity at a) time t = 50 s and b) t = 100 s?
Physics
1 answer:
allsm [11]2 years ago
7 0

Answer:

a) \omega = 50\,\frac{rad}{s}, b) \omega = 0\,\frac{rad}{s}

Explanation:

The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:

\tau = F \cdot r

\tau = m\cdot a \cdot r

\tau = m \cdot \alpha \cdot r^{2}

Where \alpha is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:

\alpha = \frac{170\,\frac{rad}{s} - 200\,\frac{rad}{s} }{10\,s}

\alpha = -3\,\frac{rad}{s^{2}}

Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:

a) t = 50 s.

\omega = 200\,\frac{rad}{s} - \left(3\,\frac{rad}{s^{2}} \right) \cdot (50\,s)

\omega = 50\,\frac{rad}{s}

b) t = 100 s.

Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:

t = \frac{0\,\frac{rad}{s}-200\,\frac{rad}{s} }{\left(-3\,\frac{rad}{s^{2}} \right)}

t = 66.667\,s

Since t > 66.667\,s, then the angular velocity is equal to zero. Therefore:

\omega = 0\,\frac{rad}{s}

You might be interested in
An astronaut drops a feather from 1.2 m above
vfiekz [6]

This is a free fall and in free fall we use this formula:

d = (1 ÷ 2) × g × t², where d is the distance, g is the gravitational acceleration and t is the time.

In our case,

We are already given the moon's gravitational acceleration and we are going to substitute it with g. Let's leave the unknown alone, which is t.

t = √(2d ÷ g)

If we perform the formula, t is found to be √(2d ÷ g) = √(2 × 1.2 ÷ 1.62) ≅ 1.217 s

I am sorry for my bad English and if there is anything that you do not understand please let me know.

7 0
2 years ago
A pitcher exerts a force on a baseball that is 30 times the balls weight. How fast is the pitcher accelerating the ball?
iVinArrow [24]

Answer:

 Pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²

Explanation:

  Force applied on baseball = 30 times weight of the ball.

   Weight of ball = mg, where m is the mass of ball and g is acceleration due to gravity value.

  We have force applied is also equal to product of mass and acceleration.

                            F = ma = 30 x mg

                                 a = 30g

   So, pitcher is accelerating the ball at 30 times of acceleration due to gravity = 294 m/s²

8 0
2 years ago
At a given instant the bottom A of the ladder has an acceleration aA = 4 f t/s2 and velocity vA = 6 f t/s, both acting to the le
Nana76 [90]

Answer:

Acceleration=24.9ft^2/s^2

Angular acceleration=1.47rads/s

Explanation:

Note before the ladder is inclined at 30° to the horizontal with a length of 16ft

Hence angular velocity = 6/8=0.75rad/s

acceleration Ab=Aa +(Ab/a)+(Ab/a)t

4+0.75^2*16+a*16

0=0.75^2*16cos30°-a*16sin30°---1

Ab=0+0.75^2sin30°+a*16cos30°----2

Solving equation 1

(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s

Also from equation 2

Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2

6 0
1 year ago
While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
olga2289 [7]

Answer:

a.) F = 3515 N

b.) F = 140600 N

Explanation: given that the

Mass M = 74kg

Initial velocity U = 7.6 m/s

Time t = 0.16 s

Force F = change in momentum ÷ time

F = (74×7.6)/0.16

F = 3515 N

b.) If Logan had hit the concrete wall moving at the same speed, his momentum would have been reduced to zero in 0.0080 seconds

Change in momentum = 74×7.6 + 74×7.6

Change in momentum = 562.4 + 562.4 = 1124.8 kgm/s

F = 1124.8/0.0080 = 140600 N

6 0
1 year ago
Tyler has learned that potential energy is energy stored. Tyler's teacher asks the students to come up with a demonstration of p
Advocard [28]
D.A child at the top of a slide
7 0
2 years ago
Read 2 more answers
Other questions:
  • A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
    5·2 answers
  • A Federation starship (8.5 ✕ 106 kg) uses its tractor beam to pull a shuttlecraft (1.0 ✕ 104 kg) aboard from a distance of 14 km
    10·1 answer
  • A softball is thrown from the origin of an x-y coordinate system with an initial speed of 18 m/s at an angle of 35∘ above the ho
    12·1 answer
  • An object which has a mass of 70 kg is sitting on a cliff 10 m high. Calculate the object's Potential energy. Given g = 10m/s2
    11·1 answer
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • The energy yield of a nuclear weapon is often defined in terms of the equivalent mass of a conventional explosive. 1 ton of a co
    14·1 answer
  • A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary
    8·1 answer
  • While a car is stopped at a traffic light in a storm, raindrops strike the roof of the car. The area of the roof is 5.0 m2. Each
    13·1 answer
  • Find the lowest two frequencies that produce a maximum sound intensity at the positions of Moe and Curly.
    5·1 answer
  • Which of the following best describes a hypothesis?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!