Answer: Dalton’s model
Explanation:
In the attached image we can see four atomic models labeled with four letters:
W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.
X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons. This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.
Y represents Thomson's model, also called the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.
Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.
So, the only missing model is <u>Dalton's model</u>, which was the first atomic model: the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.
Explanation:
A person standing still for a long time feels tired because the force of gravity acts on our body and puts stress on our muscles. so our muscles need energy to do work and keep body balanced and help to stand upright.
Answer:
a). same as
b). less than
Explanation:
a). When a bicycle is moving, the linear speed at the top of the rear wheel is same as the linear speed at the top of the front wheel. Since the clown's bicycle is a rigid body, both the wheels that is the front wheel and the rear wheel will move with the same linear speed.
b). Since we know that angular speed varies inversely to the radius of the wheel.
That is ω = 1 / r
Since the rear wheel has twice the radius of that of the front wheel, therefore real wheel will have less angular speed than the front wheel.
Therefore, the angular speed of the rear wheel is less than the angular speed of the front wheel.
Answer:
the required mass flow rate is 49484.37 kg/s
Explanation:
Given the data in the question;
we first determine the relation for mass flow rate of water that passes through the turbine;
so the relation for net work on the turbine due to the change in potential energy considering 100% efficiency is;
= m ( Δ P.E )
so we substitute (gh) for ( Δ P.E );
= m (gh)
m =
/ gh
so we substitute our given values into the equation
m = 100 MW / ( 9.81 m/s²) × 206 m
m = ( 100 MW × 10⁶W/MW) / ( 9.81 m/s²) × 206 m
m = 10 × 10⁷ / 2020.86
m = 49484.37 kg/s
Therefore, the required mass flow rate is 49484.37 kg/s
Answer:
The time to boil the water is 877 s
Explanation:
The first thing we must do is calculate the external resistance (R) of the circuit, from the description we notice that it is a series circuit, by which the resistors are added
V = i (r + R)
We replace we calculate
r + R = V / i
R = v / i - r
R = 10/12 -0.04
R = 0.793 Ω
We calculate the power supplied
P = V i = I² R
P = 12² 0.793
P = 114 W
This is the power dissipated in the external resistance
We use the relationship, that power is work per unit of time and that work is the variation of energy
P = E / t
t = E / P
t = 100 10³/114
t = 877 s
The time to boil the water is 877 s