Answer:
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Explanation:
The electric field is given by
dE = k dq / r²
In this case as we have a continuous load distribution we can use the concept of linear density
λ= Q / x = dq / dx
dq = λ dx
We substitute in the equation
∫ dE = k ∫ λ dx / x²
We integrate
E = k λ (-1 / x)
We evaluate between the lower limits x = x₀- x₂ and higher x = x₀-x₁
E = k λ (-1 / x₀-x₁ + 1 / x₀-x₂)
E = k λ (x₂ -x₁) / (x₀-x₂) (x₀-x₁)
We replace the density
E = k (Q / (x₂-x₁)) [(x₂-x₁) / (x₀-x₂) (x₀-x₁)]
E = k Q 1 / (x₀-x₂) (x₀-x₁)
Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/
Answer:
-6.6 km/h
Explanation:
In 7hr plane travelled 2020km;
For the first 4hr the average speed was 310km/h;
d=st, s=d/t;
Distance covered in first 4h is d = 310km/h×4h = 1240km;
See the image attached for further solution
Thermal energy energy that has hot cold or warm
Temp.Energy is the out come of the thermal engery and affects Earth and space
Answer:
The end of the meter stick with the deflated balloon should have risen into the air. ... The only way the balloon could have lost mass is if the air that was inside it has mass. With this experiment you have shown that air takes up space and has mass, so you have proven that air is matter.
Explanation: