answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
1 year ago
13

A 1500 kg car is pushing a 4000 kg truck. The car and truck are accelerating at 2.0 m/s^2. Assuming that the frictional force on

the truck is negligible, what force is the truck exerting on the car?
Physics
1 answer:
Crazy boy [7]1 year ago
7 0

To solve this problem we will use the Force equation according to the definition given in Newton's second law. There we have that the Force is equal to

F =ma

Where,

m = mass

a = acceleration

Our values are given as

m_1 = 1500 kg

m_2 = 4000 kg

a = 2.0 m/s^2

Considering that both mass are equal to one, we have that:

F = (m_1+m_2)* a

F = (1500 + 4000)(2.0)

F = 11000 N = 11kN

Therefore the truck exert a force on the car of 11kN

You might be interested in
A section of highway has the following flowdensity relationship q = 50k − 0.156k2 [with q in veh/h and k in veh/mi]. What is the
lions [1.4K]

Answer:

a) capacity of the highway section = 4006.4 veh/h

b) The speed at capacity = 25 mph

c) The density when the highway is at one-quarter of its capacity = k = 21.5 veh/mi or 299 veh/mi

Explanation:

q = 50k - 0.156k²

with q in veh/h and k in veh/mi

a) capacity of the highway section

To obtain the capacity of the highway section, we first find the k thay corresponds to the maximum q.

q = 50k - 0.156k²

At maximum flow density, (dq/dk) = 0

(dq/dt) = 50 - 0.312k = 0

k = (50/0.312) = 160.3 ≈ 160 veh/mi

q = 50k - 0.156k²

q = 50(160.3) - 0.156(160.3)²

q = 4006.4 veh/h

b) The speed at the capacity

U = (q/k) = (4006.4/160.3) = 25 mph

c) the density when the highway is at one-quarter of its capacity?

Capacity = 4006.4

One-quarter of the capacity = 1001.6 veh/h

1001.6 = 50k - 0.156k²

0.156k² - 50k + 1001.6 = 0

Solving the quadratic equation

k = 21.5 veh/mi or 299 veh/mi

Hope this Helps!!!

3 0
2 years ago
The amount of pressure required to move a 6800 lb force with a 6" d piston is ___ psi.
Katena32 [7]
The pressure needed in PSI = Pounds of force needed divided by the cylinder Area
The Cylinder rod Area is 21.19  sq inches
Thus, the pressure= 6800/21.19
                              = 320.91 PSI

7 0
1 year ago
In the sport of parasailing, a person is attached to a rope being pulled by a boat while hanging from a parachute-like sail. A r
scoray [572]

Answer:

W = 506.75 N

Explanation:

tension = 2300 N

Rider is towed at a constant speed means there no net force acting on the rider.

hence taking all the horizontal force and vertical force in consideration.

net horizontal  force:

F cos 30° - T cos 19° = 0

F cos 30° = 2300 × cos 19°

F = 2511.12 N

net vertical force:

F sin 30° - T sin 19°- W = 0

W = F sin 30° - T sin 19°

W =  2511.12 sin 30° - 2300 sin 19°

W = 506.75 N

8 0
2 years ago
If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The vol
xenn [34]

Answer:

Average density of Sun is 1.3927 \frac{g}{cm}.

Given:

Radius of Sun = 7.001 ×10^{5} km = 7.001 ×10^{10} cm

Mass of Sun = 2 × 10^{30} kg = 2 × 10^{33} g

To find:

Average density of Sun = ?

Formula used:

Density of Sun = \frac{Mass of Sun}{Volume of Sun}

Solution:

Density of Sun is given by,

Density of Sun = \frac{Mass of Sun}{Volume of Sun}

Volume of Sun = \frac{4}{3} \pi r^{3}

Volume of Sun = \frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}

Volume of Sun = 1.436 × 10^{33} cm^{3}

Density of Sun = \frac{ 2\times 10^{33} }{1.436 \times 10^{33} }

Density of Sun = 1.3927 \frac{g}{cm}

Thus, Average density of Sun is 1.3927 \frac{g}{cm}.

4 0
1 year ago
A metallic sphere of radius 2.0 cm is charged with +5.0-μC+5.0-μC charge, which spreads on the surface of the sphere uniformly.
sladkih [1.3K]

Answer:

Explanation:

Potential due to a charged metallic sphere having charge Q and radius r on its surface will be

v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre  potential is

v = k Q / R

a ) On the surface of the shell , potential due to positive charge is

V₁ = \frac{9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

On the surface of the shell , potential due to negative  charge is

V₁ = \frac{- 9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

Total potential will be zero . they will cancel each other.

b ) On the surface of the sphere potential

= \frac{9\times10^9\times5\times10^{-6}}{2\times10^{-2}}

= 22.5 x 10⁵ V

On the surface of the sphere potential due to outer shell

= \frac{9\times10^9\times5\times10^{-6}}{5\times10^{-2}}

= -9 x 10⁵

Total potential

=( 22.5 - 9 ) x 10⁵

= 13.5 x 10⁵ V

c ) In the space between the two , potential will depend upon the distance of the point from the common centre .

d ) Inside the sphere , potential will be same as that on the surface that is

13.5 x 10⁵ V.

e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.

5 0
1 year ago
Other questions:
  • Which of the following would increase the strength of an electromagnet ?
    5·2 answers
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • Which is the BEST example of refraction?
    13·2 answers
  • Imagine that you are sitting in a closed room (no windows, no doors) when, magically, it is lifted from Earth and sent accelerat
    14·1 answer
  • A certain slide projector has a 100 mm focal length lens. How far away is the screen, if a slide is placed 103 mm from the lens
    6·1 answer
  • The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m3. Convert this volume to liters
    13·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • Emir is standing in a treehouse and looking down at a swingset in the yard next door. The angle of depression from Emir's eyelin
    10·2 answers
  • A cyclist traveling at 5m/s uniformly accelerates up to 10 m/s in 2 seconds. Each tire of the bike has a 35 cm radius, and a sma
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!