#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid
Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Answer:
3.964 s
Explanation:
Metric unit conversion:
1 miles = 1.6 km = 1600 m.
1 hour = 60 minutes = 3600 seconds
75 mph = 75 * 1600 / 3600 = 33.3 m/s
22.5 mph = 22.5 * 1600/3600 = 10 m/s
Let g = 9.81 m/s2
Friction is the product of coefficient and normal force, which equals to the gravity

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

Answer:
<h2>jeusYgwyhedswusjsj</h2>
Explanation:
sjauajshsu<em>y</em><em>e</em><em>u</em><em>e</em><em>u</em><em>e</em><em>h</em><em>e</em><em>y</em><em>s</em><em>b</em><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em />
Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC