Answer:
The peak current carried by the axon is 5.85 x 10⁻⁸ A
Explanation:
Given;
distance of the field from the axon, r = 1.3 mm
peak magnetic field strength, B = 9 x 10⁻¹² T
To determine the peak current carried by the axon, apply the following equation;

where;
B is the peak magnetic field
r is the distance of the magnetic field from axon
μ is permeability of free space = 4π x 10⁻⁷
I is the peak current
Re-arrange the equation and solve for "I"

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A
Answer:
The maximum speed of the car at the bottom of that drop is 26.34 m/s.
Explanation:
Given that,
The maximum vertical distance covered by the roller coaster, h = 35.4 m
We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :



v = 26.34 m/s
So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.
Answer:
The increase in the internal energy = 350 J
Explanation:
Given that
Q= 275 J
W= - 125 J
W' = 50 J
W(net)= -125 + 50 = -75 J
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take change in the internal energy =ΔU
We know that
Q= ΔU + W(net)
275 = ΔU -75
ΔU= 275 + 75 J
ΔU=350 J
The increase in the internal energy = 350 J
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.