Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

The change in momentum is equal to the impulse delivered. So,

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020
Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
Answer:
K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x
Explanation:
To find the variation of kinetic energy, let's use the work energy theorem
W = ΔK
∫ F .dx = K -K₀
If the body starts from rest K₀ = 0
∫ F dx cos θ = K
Since the force and displacement are in the same direction, the angle is zero, so the cosine is 1
we substitute and integrate
α ∫ x³ dx + β ∫ dx = K
α x⁴ / 4 + β x / 1 = K
we evaluate from the lower limit F = 0 to the upper limit F
α (x⁴ / 4 -0) + β (x -0) = K
K = αX⁴ / 4 + β x
K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x
in order to finish the calculation we must know the displacement
Answer:
The body's rotational inertia is greater in layout position than in tucked position. Because the body remains airborne for roughly the same time interval in either position, the gymnast must have much greater kinetic energy in layout position to complete the backflip.
Explanation:
A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.
When the body is straight , its moment of rotational inertia is more than the case when he folds his body round. Hence rotational inertia ( moment of inertia x angular velocity ) is also greater. To achieve that inertia , there is need of greater imput of energy in the form of kinetic energy which requires greater effort.
So a gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.