answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
2 years ago
7

A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 590 N/m. The block is pulled

from its equilibrium position at x = 0 m to a displacement x = +0.080 m and is released from rest. The block then executes simple harmonic motion along the x-axis (horizontal). The velocity of the block at time t = 0.10 s is closest to:________.
Physics
1 answer:
SVETLANKA909090 [29]2 years ago
7 0

Answer:

The  value is  v =  -0.04 \  m/s

Explanation:

From the question we are told that

   The  mass  of the block is  m  =  2.0 \ kg

   The  force constant  of the spring is  k  =  590 \ N/m

   The amplitude  is  A =  + 0.080

   The  time consider is  t =  0.10 \  s

Generally the angular velocity of this  block is mathematically represented as

      w =  \sqrt{\frac{k}{m} }

=>   w =  \sqrt{\frac{590}{2} }

=>   w = 17.18 \  rad/s

Given that the block undergoes simple harmonic motion the velocity is mathematically represented as  

         v  =  -A w sin (w* t )

=>       v  = -0.080 * 17.18 sin (17.18* 0.10 )

=>       v =  -0.04 \  m/s

You might be interested in
Which of the following statements is/are true? Check all that apply. Check all that apply. The work done by a nonconservative fo
navik [9.2K]

Answer:

The work done by a nonconservative force depends on the path taken. <u>TRUE</u>

A nonconservative force permits a two-way conversion between kinetic and potential energies. <u>TRUE</u>

A potential energy function can be specified for a nonconservative force.

<u>FALSE</u>

The work done by a conservative force depends on the path taken.

<u>FALSE</u>

A conservative force permits a two-way conversion between kinetic and potential energies.

<u>FALSE</u>

A potential energy function can be specified for a conservative force.

<u>TRUE</u>

Explanation:

The work done by a nonconservative force depends on the path taken. <u>TRUE</u>

This kind of force can not be obtained from potential function so the work made by this kind of force depend of the path taken.

A nonconservative force permits a two-way conversion between kinetic and potential energies. <u>TRUE</u>

A nonconservative force permits conversion to kinetic energy plus potential energy during it made work over the system.

<u></u>

A potential energy function can be specified for a nonconservative force.

<u>FALSE</u>

Considering that the work made by kind of force depend of the taken path they can not be determined by a potential fuction.

The work done by a conservative force depends on the path taken.

<u>FALSE</u>

This asseveration is related with the previous one. So the conservative force can be deducted from a potential function thus their y work made do not depend of the path taken.

A conservative force permits a two-way conversion between kinetic and potential energies.

<u>FALSE</u>

This means that as conservative force is related from a potential function it only can modify the potential energy of the system.

<u></u>

A potential energy function can be specified for a conservative force.

<u>TRUE</u>

<u></u>

This is as consequence of the definition of conservative force that it can be determined from a potential function.

4 0
1 year ago
A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where
patriot [66]

Answer:

A) i) E =α/ [2πrL(εo)]

ii) E=0

iii) E = α/(πrεo)

The graph between E and r for the 3 cases is attached to this answer ;

B) i) charge on the inner surface per unit length = - α

ii) charge per unit length on the outer surface = 2α

Explanation:

A) i) For r < a, the charge is in the cavity and takes a shape of the cylinder. Thus, applying gauss law;

EA = Q(cavity) / εo

Now, Qcavity = αL

So, E(2πrL) = αL/εo

Making E the subject of the formula, we have;

E =α/ [2πrL(εo)]

ii) For a < r < b; since the distance will be in the bulk of the conductor, therefore, inside the conductor, the electric field will be zero.

So, E=0

iii) For r > b; the total enclosed charge in the system is the difference between the net charge and the charge in the inner surface of the cylinder.

Thus, Qencl = Qnet - Qinner

Qinner will be the negative of Qnet because it should be in the opposite charge of the cavity in order for the electric field to be zero. Thus;

Qencl = αL - (-αL) = 2αL

Thus, applying gauss law;

EA = Qencl / εo

Thus, E = Qencl / Aεo

E = 2αL/Aεo

Since A = 2πrL,

E = 2αL/2πrLεo = α/(πrεo)

B) i) The charge on the cavity wall must be the opposite of the point charge. Therefore, the charge per unit length in the inner surface of the tube will be - α

ii)Net charge per length for tube is +α and there is a charge of - α on the inner surface. Thus charge per unit length on the outer surface will be = +α - (- α) = 2α

7 0
2 years ago
A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
NISA [10]

Explanation:

The given data is as follows.

    Mass of small bucket (m) = 4 kg

    Mass of big bucket (M) = 12 kg

    Initial velocity (v_{o}) = 0 m/s

    Final velocity (v_{f}) = ?

  Height H_{o} = h_{f} = 2 m

and,    H_{f} = h_{o} = 0 m

Now, according to the law of conservation of energy

         starting conditions = final conditions

  \frac{1}{2}MV^{2}_{o} + Mgh_{o} + \frac{1}{2}mv^{2}_{o} + mgh_{o} = \frac{1}{2}MV^{2}_{f} + Mgh_{f} + \frac{1}{2}mv^{2}_{f} + mgh_{f}

     \frac{1}{2}(12)(0)^{2} + (12)(9.81)(2) + \frac{1}{2}(4)(0)^{2} + (4)(9.81)(0) = \frac{1}{2}(12)V^{2}_{f} + (12)(9.81)(0) + \frac{1}{2}(4)V^{2}_{f} + (4)(9.81)(2)

                 235.44 = 8V^{2}_{f} + 78.48

                V_{f} = 4.43 m/s

Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.

3 0
1 year ago
Nicki rides her bike at a constant speed for 6 km. That part of her ride takes her 1 h. She then rides her bike at a constant sp
Savatey [412]

km x h = km/h

First trial: 6 x 1 = 6km/h

Second trial: 9 x 2 = 18km/h

6 + 18 = <u>24km/h</u> (Total)

Or

6 + 9 = 15 km

2 + 1 = 3h

15 + 3 = 18

15 x 2 = 30

3 x 2 = 6

30 - 6 = <u>24km/h</u>

8 0
2 years ago
An antibaryon composed of two antiup quarks
Sveta_85 [38]

Answer:

(2) −1 e

Explanation:

A quark is the lightest elementary particles which form hadron such as proton and neutron. A quark has fractional charge.

Up, charm and top quarks have +\frac{2}{3} e charge where as down, strange and bottom quarks have -\frac{1}{3}e charge.

The antiparticle of up quark is antiup quark and has charge -\frac{2}{3}e charge.

The antiparticle of down quark is antidown quark and has charge +\frac{1}{3}e charge.

An antibaryon is composed of two anti-up quark and one anti-down quark.

Net charge of the anti-baryon is:

2\times (-\frac{2}{3} e)+1\times (+\frac{1}{3})e=-1e

Thus, antibaryon has -1e charge.

5 0
2 years ago
Other questions:
  • Roseanne heated a solution in a beaker as part of a laboratory experiment on energy transfer. After a while, she noticed the liq
    5·1 answer
  • if a volcano spews a 500-kg rock vertically upward a distance of 500m. what was its velocity when it left the volcano? if the vo
    9·1 answer
  • The manometer shown in fig. 2 contains water and kerosene. with both tubes open to the atmosphere, the free-surface elevations d
    13·1 answer
  • A ball is released from a tower at a height of 100 meters toward the roof of another tower that is 25 meters high. The horizonta
    13·1 answer
  • A shell is fired from the ground with an initial speed of 1.70x10^3 m/s at an initial angle of 55.0° to the horizontal, Neglectin
    10·1 answer
  • Josh is learning to dive.
    7·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
  • A projectile is launched at an angle of 60° from the horizontal and at a velocity of
    15·1 answer
  • A rock is thrown down from the top of a cliff with a velocity of 3.61 m/s (down). The cliff is 28.4 m above the ground. Determin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!