Answer:
6.78 X 10³ N/C
Explanation:
Electric field near a charged infinite plate
= surface charge density / 2ε₀
Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.
Field due to charge density of +95.0 nC/m2
E₁ = 95 x 10⁻⁹ / 2 ε₀
Field due to charge density of -25.0 nC/m2
E₂ = 25 x 10⁻⁹ / 2ε₀
Total field
E = E₁ + E₂
= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ / 2ε₀
= 6.78 X 10³ N/C
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ... V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ... s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1; -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ... s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1; -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
Answer:
a = 0.16
Explanation:
given,
mass of the object 1 = 0.2 kg
mass of the object 2 = 0.3 kg
acceleration when force is on 0.2 kg = 0.4 m/s²
acceleration when both mass are combine = ?
F = m a
F = 0.2 × 0.4
F = 0.08 N
force acting is same and total mass = 0.2 + 0.3 = 0.5 Kg
F = m a


a = 0.16 m/s²
the acceleration acting when both the body is attached is a = 0.16
Answer: a) 456.66 s ; b) 564.3 m
Explanation: The time spend to cover any distance a constant velocity is given by:
v= distance/time so t=distance/v
The slower student time is: t=780m/0.9 m/s= 866.66 s
For the faster students t=780 m/1,9 m/s= 410.52 s
Therefore the time difference is 866.66-410.52= 456.14 s
In order to calculate the distance that faster student should walk
to arrive 5,5 m before that slower student, we consider the follow expressions:
distance =vslower*time1
distance= vfaster*time 2
The time difference is 5.5 m that is equal to 330 s
replacing in the above expression we have
time 1= 627 s
time2 = 297 s
The distance traveled is 564,3 m