Answer:

Explanation:
Position of charge q₁ is (0,0)
Position of charge q₂ is (x₁,0)
So, the electric potential energy between the charges is given by :

Now the position of charge q₂ has been changes from (x₁,0) to (x₂,y₂). Now, electric potential energy between the charges is :

We know form the work energy theorem that, the change in potential energy is equal to the work done. Mathematically, it is given by :





Hence, the work done by the electrostatic force on the moving point charge is
. Hence, this is the required solution.
Potential energy at any point is (M G H). On the way down, only H changes. So halfway down, half of the potential energy remains, and the other half has turned to kinetic energy. Half of the (M G H) it had at the tpp is (0.5 x 9.8 x 10) = 49 joules.
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:

For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
Jogger moves in three displacements
d1 = 10 blocks East
d2 = 5 blocks South
d3 = 2 blocks East
now we can say
total displacement towards East direction will be

Total displacement towards South

now to find the net displacement we can use vector addition



<em>so magnitude of net displacement will be equal to 13 blocks</em>