Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
Answer:
yes
Explanation:
He used the formula R = VI and obtained an
answer of 2
To solve this exercise it is necessary to apply the kinematic equations of angular motion.
By definition we know that the displacement when there is constant angular velocity is

From our given data we know that,



Moreover we know that

Therefore for time t=8.1s we have,



That number in revolution is:


Here, we see that there are 15 complete revolutions
And 0.108 revolutions i not complete, so the tunable rotation is

Therefore the angle of the speck at a time 8.1s is 
Answer:
option A
Explanation:
given,
depth of the sea level = 10 m
g = 10 m/s²
Pressure underwater = ?
we know,
P = ρ g h
where ρ is the density of water which is equal to 1000 kg/m³
h is the depth of sea level
P = ρ g h
P = 1000 x 10 x 10
P = 100000 Pa
P = 100 kPa
Hence, the correct answer is option A