Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V
Hi, thank you for posting your question here at Brainly.
To compute for the change in potential energy, the equation would be:
delta PE = mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J
The potential energy is converted to kinetic energy.
The initial velocity of the bird before the gust of wind : <u>4 m/s</u>
<h3>Further explanation</h3>
An equation of uniformly accelerated motion

v = vo + at
Vt² = vo² + 2a (x-xo)
x = distance on t
vo/vi = initial speed
vt/vf = speed on t /final speed
a = acceleration
Acceleration is a change in speed within a certain time interval
a = Δv /Δ t

Let complete the task :
A bird is flying to the right when a gust of wind causes the bird to accelerate leftward at 0.5 m/s² for 3 s. After the wind stops, the bird is flying to the right with a velocity of 2.5 m/s.
Assuming the acceleration from the wind is constant, what was the initial velocity of the bird before the gust of wind?
we can use formula :
vf = vi + a.t
vf = final velocity = 2.5 m/s
vi = asked
a = - 0.5 m/s²(leftward=negative)
t = 3 s
then :

<h3>Learn more</h3>
The car reach the end of the road
brainly.com/question/13750982
Keywords: uniformly accelerated motion, distance, velocity, acceleration
#LearnwithBrainly
Here in this question as we can see there is no air friction so we can use the principle of energy conservation


now here we know that



now plug in all values in above equation

divide whole equation by mass "m"



so height of the ball from ground will be 1.35 m