answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bija089 [108]
2 years ago
10

A uniform electric field with a magnitude of 125 000 N/C passes through a rectangle with sides of 2.50 m and 5.00 m. The angle b

etween the electric field vector and the vector normal to the rectangular plane is 65.0°. What is the electric flux through the rectangle? A) 1.56 × 106 N⋅m2/C B) 6.60 × 105 N⋅m2/C C) 1.42 × 105 N⋅m2/C D) 5.49 × 104 N⋅m2/C E) 4.23 × 104 N⋅m2/C
Physics
1 answer:
jeyben [28]2 years ago
8 0

Answer:

6.60\cdot 10^5 Nm^2/C

Explanation:

The electric flux through the rectangle is given by

\Phi = E A cos \theta

where

E is the electric field strength

A is the area of the rectange

\theta is the angle between the direction of the electric field and of the vector normal to the plane of the rectangle

In this problem we have

E = 125 000 N/C

The area of the rectangle is

A=2.50 m \cdot 5.00 m=12.5 m^2

and the angle is

\theta=65.0^{\circ}

so, the electric flux is

\Phi = (125,000 N/C)(12.5 m^2)(cos 65^{\circ})=6.60\cdot 10^5 Nm^2/C

You might be interested in
Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
melamori03 [73]

Answer:

Explanation:

Given that,

Height of the bridge is 20m

Initial before he throws the rock

The height is hi = 20 m

Then, final height hitting the water

hf = 0 m

Initial speed the rock is throw

Vi = 15m/s

The final speed at which the rock hits the water

Vf = 24.8 m/s

Using conservation of energy given by the question hint

Ki + Ui = Kf + Uf

Where

Ki is initial kinetic energy

Ui is initial potential energy

Kf is final kinetic energy

Uf is final potential energy

Then,

Ki + Ui = Kf + Uf

Where

Ei = Ki + Ui

Where Ei is initial energy

Ei = ½mVi² + m•g•hi

Ei = ½m × 15² + m × 9.8 × 20

Ei = 112.5m + 196m

Ei = 308.5m J

Now,

Ef = Kf + Uf

Ef = ½mVf² + m•g•hf

Ef = ½m × 24.8² + m × 9.8 × 0

Ef = 307.52m + 0

Ef = 307.52m J

Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw

7 0
2 years ago
What are the reasons for the establishment of UGA?
3241004551 [841]

Answer:

In February 1784, just after the close of the Revolutionary War, the General Assembly of Georgia earmarked 40,000 acres of land to endow "a college or seminary of learning." The following year, Abraham Baldwin, a lawyer and minister educated at Yale University in New Haven, Connecticut, who had settled in Georgia

Explanation:

please mark this answer as brainliest

8 0
1 year ago
If you accidentally touch the "hot" wire connected to the 120 V line, how much current will pass through your body?
Sav [38]
<h2>Complete Question:</h2>

You are on an aluminum ladder that is standing on the ground, trying to fix an electrical connection with a metal screwdriver having a metal handle. Your body is wet because you are sweating from the exertion; therefore, it has a resistance of 1.60 kΩ .

(a) If you accidentally touch the "hot" wire connected to the 120 V line, how much current will pass through your body?

(b) How much electrical power is delivered to your body?

<h2>Answer:</h2>

(a) 0.075A

(b) 9W

<h2>Explanation:</h2>

The voltage (V) passing across or supplied to a body is directly proportional to the current (I) flowing through the body as stated by Ohm's law. i.e

V ∝ I

=> V = I x R                 ----------------------(i)

Where;

R = constant of proportionality called resistance of the body

(a) As stated in the question;

The body is wet and thus will conduct electricity and has the following;

V = voltage supplied = 120V

R = resistance of the wet body = 1.60kΩ = 1.6 x 1000Ω = 1600Ω

Substitute these values into equation(i) as follows;

120 = I x 1600

Solve for I;

I = \frac{120}{1600}

I = 0.075A

Therefore the amount of current that will pass through your body is 0.075A

(b) Electrical power(P), which is commonly measured in Watts(W), delivered to a body is the product of the current(I) and voltage (V) supplied to the body. i.e

P = I x V           ---------------------(ii)

Where;

I = 0.075A   [as calculated above]

V = 120V     [given in the question]

Substitute these values into equation (ii) as follows;

P = 0.075 x 120

P = 9W

Therefore, the electric power delivered to your body is 9W

7 0
2 years ago
The curved section of a horizontal highway is a circular unbanked arc of radius 740m. If the coefficient of static friction betw
fiasKO [112]
Coefficient of static friction = tan(a) = 0.4
r = 740 m
g = 9.8 m/s²
v \:  =  \:  \sqrt{gr \tan( \alpha ) }
v = √(9.8 × 740 × 0.4) m/s
v ≈ 53.85908 m/s
6 0
2 years ago
Read 2 more answers
Two students walk in the same direction along a straight path, at a constant speed one at 0.90 m/s and the other at 1.90 m/s. a.
creativ13 [48]

Answer: a) 456.66 s ; b) 564.3 m

Explanation: The time spend to cover any distance a constant velocity is given by:

v= distance/time so t=distance/v

The slower student time is: t=780m/0.9 m/s= 866.66 s

For the faster students t=780 m/1,9 m/s= 410.52 s

Therefore the time difference is 866.66-410.52= 456.14 s

In order to calculate the distance that faster student should  walk

to arrive 5,5 m before that slower student, we consider the follow expressions:

distance =vslower*time1

distance= vfaster*time 2

The time difference is 5.5 m that is equal to 330 s

replacing in the above expression we have

time 1= 627 s

time2 = 297 s

The distance traveled is 564,3 m

8 0
2 years ago
Other questions:
  • Will two separate 50db sounds together constitute a 100db sound explain mathematical
    13·1 answer
  • A car starting from rest (i.e. initial velocity = 0.0 m/s), moves in the positive X-direction with a constant average accelerati
    14·1 answer
  • You've decided to build a new gaming computer and are researching which power supply to buy. Which component in a high-end gamin
    12·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • Magnetic fields within a sunspot can be as strong as 0.4T. (By comparison, the earth's magnetic field is about 1/10,000 as stron
    6·1 answer
  • A particle is located on the x axis at x = 2.0 m from the origin. A force of 25 N, directed 30° above the x axis in the x-y plan
    8·1 answer
  • In one experiment, the students allow the block to oscillate after stretching the spring a distance A. If the potential energy s
    15·2 answers
  • Describe how electromagnetic radiation can ionise an atom. 2 marks
    14·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
    12·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!