answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
2 years ago
8

If you accidentally touch the "hot" wire connected to the 120 V line, how much current will pass through your body?

Physics
1 answer:
Sav [38]2 years ago
7 0
<h2>Complete Question:</h2>

You are on an aluminum ladder that is standing on the ground, trying to fix an electrical connection with a metal screwdriver having a metal handle. Your body is wet because you are sweating from the exertion; therefore, it has a resistance of 1.60 kΩ .

(a) If you accidentally touch the "hot" wire connected to the 120 V line, how much current will pass through your body?

(b) How much electrical power is delivered to your body?

<h2>Answer:</h2>

(a) 0.075A

(b) 9W

<h2>Explanation:</h2>

The voltage (V) passing across or supplied to a body is directly proportional to the current (I) flowing through the body as stated by Ohm's law. i.e

V ∝ I

=> V = I x R                 ----------------------(i)

Where;

R = constant of proportionality called resistance of the body

(a) As stated in the question;

The body is wet and thus will conduct electricity and has the following;

V = voltage supplied = 120V

R = resistance of the wet body = 1.60kΩ = 1.6 x 1000Ω = 1600Ω

Substitute these values into equation(i) as follows;

120 = I x 1600

Solve for I;

I = \frac{120}{1600}

I = 0.075A

Therefore the amount of current that will pass through your body is 0.075A

(b) Electrical power(P), which is commonly measured in Watts(W), delivered to a body is the product of the current(I) and voltage (V) supplied to the body. i.e

P = I x V           ---------------------(ii)

Where;

I = 0.075A   [as calculated above]

V = 120V     [given in the question]

Substitute these values into equation (ii) as follows;

P = 0.075 x 120

P = 9W

Therefore, the electric power delivered to your body is 9W

You might be interested in
Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
soldier1979 [14.2K]

Answer: 6.25 m/s^2

Explanation:

The distance between Vinny and the ramp is 200m

And he has 8 seconds (At max) to reach that distance.

The initial velocity is 0m/s

The initial position is 0m

Now, we want to find the constant acceleration in order to do this, so suppose that we have a constant acceleration A.

a(t) = A.

To have the velocity, we must integrate over time, and remember that the constant of integration is equal to zero because the initial velocity is zero.

v(t) = A*t

For the position, we integrate again over time.

p(t) = 0.5*A*t^2

And we want to travel 200m in 8 seconds, then:

p(8s) = 200m

0.5*A*(8s)^2 = 200m

A*32s^2 = 200m

A = 200m/32s^2 = 6.25 m/s^2

This is the minimum acceleration in order to do this, if Vinny has a larger acceleration he will travel the 200m in a smaller time.

7 0
2 years ago
An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
Xelga [282]

Answer:

B. The distance between the slits and the screen is halved.

C. The slit width is doubled.

D. A green, rather than red, light source is used.

E. The experiment is conducted in a water-filled tank.

Explanation:

As we know that the position of first minimum is given as

a sin\theta = N\lambda

so we have

\theta = sin^{-1}(\fracN\lambda}{a})

so width of minimum is given as

w = L\times sin^{-1}(\fracN\lambda}{a})

now if we need to decrease the angular position of minimum

1). so we can decrease the distance of screen from the slit

2). we can decrease the wavelength

3). We can increase the width of the slit

So correct answer will be

B. The distance between the slits and the screen is halved.

C. The slit width is doubled.

D. A green, rather than red, light source is used.

E. The experiment is conducted in a water-filled tank.

6 0
2 years ago
Kendra wants to use similes to describe the reflection and absorption of waves. Which pair of similes best fit?
Scrat [10]

Answer:

Reflection is like bouncing a tennis ball, and absorption is like water soaking into a paper towel.

Reflection is like water soaking into a paper towel, and absorption is like bouncing a tennis ball.

Reflection is the way a straw appears in a glass of water, and absorption is the separation of colors from a prism.

Reflection is the separation of colors from a prism, and absorption is the way a straw appears in a glass of water

Explanation:

already asked

5 0
2 years ago
Two balls, each with a mass of 0.5 kg, collide on a pool table. Is the law of conservation of momentum satisfied in this collisi
mart [117]
Conservation of momentum<span> is a fundamental law of physics. This law states that the </span>momentum<span> of a system is constant if there are </span>no external forces acting on the system. In a situation in which two balls, each with a mass of 0.5 kg, collide on a pool table<span> the law of conservation of momentum is not satisfied because there are external forces that moved the balls. </span>
6 0
2 years ago
Read 2 more answers
You may have noticed runaway truck lanes while driving in the mountains. These gravel-filled lanes are designed to stop trucks t
Sladkaya [172]

Answer:

0.767

Explanation:

The work done on the truck by the frictional drag force is given by

W=-Fd

where

F is the magnitude of the frictional force

d = 38.0 m is the maximum displacement allowed for the truck

The negative sign is due to the fact that the force of friction is opposite to the motion of the truck

The force of friction can also be written as:

F=\mu mg

where

\mu is the coefficient of kinetic friction between the truck and the lane

m is the mass of the truck

g is the acceleration of gravity

So we can rewrite the work done as

W=-\mu mg d (1)

According to the work-energy theorem, the work done by friction is equal to the change in kinetic energy of the truck:

W=K_f - K_i = \frac{1}{2}mv^2-\frac{1}{2}mu^2 (2)

where

v = 0 is the final velocity of the truck

u = 23.9 m/s is the initial velocity of the truck

By combining (1) and (2) we get

-\frac{1}{2}mu^2 = -\mu mg d

And solving for \mu, we find the minimum coefficient of kinetic friction able to stop the truck in a distance d:

\mu = \frac{u^2}{2gd}=\frac{23.9^2}{2(9.8)(38.0)}=0.767

7 0
2 years ago
Other questions:
  • A space station consists of two donut-shaped living chambers, A and B, that have the radii shown in the drawing. As the station
    12·1 answer
  • A motorcycle accelerates from 10. m/s to 25 m/s in 5.0 seconds. What is the average acceleration of the bike?
    10·2 answers
  • Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
    15·1 answer
  • a satellite is orbiting Earth at a distance of 35 kilometers. The satellite has a mass of 500 kilograms. what is the force betwe
    7·2 answers
  • A hollow cylinder of mass 2.00 kg, inner radius 0.100 m, and outer radius 0.200 m is free to rotate without friction around a ho
    7·1 answer
  • An object has a mass of 785 g and a volume of 15 cm³. What is its density? (Give your answer in g/cm³ to 2 decimal places).
    12·1 answer
  • A solenoid 10.0 cm in diameter and 75.0 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    6·2 answers
  • The Earth's radius is 6378.1 kilometers. A mad scientist has come up with the simultaneously awesome and terrifying plan to incr
    11·2 answers
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • From mechanics, you may recall that when the acceleration of an object is proportional to its coordinate, d2xdt2=−kmx=−ω2x , suc
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!