answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
2 years ago
6

Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keep

s falling short on her jumps. Which skill should she work on to get better at jumping to catch the trapeze? Agility Reaction Balance Power
Physics
2 answers:
Mekhanik [1.2K]2 years ago
8 0
Power is what she should work on. 
Oliga [24]2 years ago
8 0
<h2>Samantha wants to study circus performance - Option 4 </h2>

Samantha wants to study circus performance when she gets to college. She has mastered many physical skills already, but she keeps falling short on her jumps. She should work on to get power better at jumping to catch the trapeze.

Agility, reaction and balance will not help her at jumping to catch the trapeze. The only power will be helpful for her. This is because power is the rate of doing work. It is also to be considered as strength. therefore if, she have power then she will not fall short on her jumps.

You might be interested in
The end of a stopped pipe is to be cut off so that the pipe will be open. If the stopped pipe has a total length L, what fractio
Alexxandr [17]

Answer:

4/10 of L.

Explanation:

A stopped pipe is a pipe with one closed end and one opened end. it is also called a closed pipe.

The fundamental mode of a stopped pipe is also called its fundamental frequency, and is f₁=v/4L.

Where f₁=fundamental frequency, v= velocity of sound, L= Length of pipe.

The fifth harmonic of the stopped pipe f₅ =5v/4L .................(1)

For an open pipe,

Fundamental  mode is also called fundamental frequency f₁₀=v/2l₀ .......... (2)

Where f₁₀ = fundamental frequency of a closed pipe, v= velocity of sound and l₀=length of the resulting open pipe.

from the question, the fundamental mode of the resulting open pipe = The fifth harmonic of the original stopped pipe.

∴ f₅=f₁₀

⇒5v/4L = v/2l₀

Equating v from both side of the equation,

⇒ 5/4L = 1/2l₀

Cross multiplying the equation,

5×2l₀ = 4L× 1

10l₀ = 4L

Dividing both side of the equation by the coefficient of l₀ i.e 10

10l₀/10 = 4L/10

∴ l₀ = 4/10(L)

∴ 4/10 of L must be cut off

7 0
2 years ago
Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
Llana [10]

We must place the pivot to keep the meter stick in balance at 90 cm (10 cm from the weight) from the free end.

Answer: Option B

<u>Explanation:</u>

In initial stage, the meter stick’s mass and mass hanged in meter stick at one end are same. Refer figure 1, the mater stick’s weight acts at the stick’s mid-point.

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                  m \times g \times(x)+((m \times g)(x-50 \mathrm{cm}))=0

                  (m \times g \times x)-(50 \times m \times g)+(m \times g \times x)=0

Taking out ‘mg’ as common and we get

                  2 x-50=0

                  2 x=50

                  x=\frac{50}{2}=25 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                 x^{\prime}=100 \mathrm{cm}-25 \mathrm{cm}=75 \mathrm{cm}

So, the stick should be pivoted at a distance of 75 cm at the free end

Now, replace mass with another mass. i.e., four times the initial mass (as given)

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                   4 m g(x)+(m g)(x-50 c m)=0

                   4 m g x+m g x-50 m g=0

Taking out ‘mg’ as common and we get

                   5 x=50

                   x=\frac{50}{5}=10 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                   x^{\prime}=100 \mathrm{cm}-10 \mathrm{cm}=10 \mathrm{cm}

So, the stick should be pivoted at a distance of 10 cm from the free end.

Therefore, the option B is correct 90 cm (10 cm from the weight).

3 0
2 years ago
A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
marissa [1.9K]

Answer:

Please find the answer in the explanation

Explanation:

Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.

Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.

We can therefore conclude that the upper plate, is positively charged

B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC

3 0
2 years ago
An astronaut holds a rock 100m above the surface of Planet X . The rock is then thrown upward with a speed of 15m/s , as shown i
Butoxors [25]

Answer:5 m/s^{2}

Explanation:

The described situation is is related to vertical motion (and free fall). So, we can use the following equation that models what happens with this rock:

y=y_{o}+V_{o}sin\theta t-\frac{1}{2}gt^{2} (1)

Where:

y=0m is the rock's final height

y_{o}=100 m is the rock's initial height

V_{o}=15 m/s is the rock's initial velocity

\theta=90\° is the angle at which the rock was thrown (directly upwards)

t=10 s is the time

g is the acceleration due gravity in Planet X

Then, isolating g and taking into account sin(90\°)=1:

g=(-\frac{2}{t^{2}})(y-y_{o}-V_{o}t) (2)

g=(-\frac{2}{(10 s)^{2}})(0 m-100 m-(15 m/s)(10 s)) (3)

Finally:

g=5 m/s^{2} (4) This is the acceleration due gravity in Planet X

7 0
2 years ago
A woman living in a third-story apartment is moving out. Rather than carrying everything down the stairs, she decides to pack he
Flura [38]

Answer:

T = 480.2N

Explanation:

In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.

The forces on the boxes are:

T-Mg=0      (1)

T: tension of the rope

M: mass of the boxes 0= 49kg

g: gravitational acceleration = 9.8m/s^2

The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.

By using the equation (1) you obtain:

T=Mg=(49kg)(9.8m/s^2)=480.2N

The woman needs to pull the rope at 480.2N

8 0
2 years ago
Other questions:
  • four students push carts filled with sports equipment across the gym. Each student pushes with the same amount of force. which c
    7·2 answers
  • A train travels a distance of 1,2 km between two stations with an average velocity of 43.2 km/h. During it's motion, at the time
    10·1 answer
  • A sled sliding on a flat,icy surface with a constant velocity is best described by
    15·1 answer
  • In a certain region of space, a uniform electric field has a magnitude of 4.30 x 104 n/c and points in the positive x direction.
    8·1 answer
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    14·2 answers
  • A sinusoidally oscillating current I ( t ) with an amplitude of 9.55 A and a frequency of 359 cycles per second is carried by a
    12·1 answer
  • Why is nuclear energy an important discussion in today's world?
    8·1 answer
  • Martin is conducting an experiment. His first test gives him a yield of 5.2 grams. His second test gives him a yield of 1.3 gram
    5·1 answer
  • What is the minimum amount of energy required to completely melt a 7.25-kg lead brick which has a starting temperature of 18.0 °
    7·1 answer
  • An object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t&gt; 0, where x(t) is measured in
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!